Aromatic oligoamide sequences able to fold into single helical capsules were functionalized with two types of side chains to make them soluble in various solvents such as chloroform, methanol or water and their propensity to recognize tartaric acid was evaluated. The binding affinities to tartaric acid and binding thermodynamics in different media were investigated by variable temperature (1)H NMR and ITC experiments, the two methods giving consistent results. We show that tartaric acid binding mainly rests on enthalpically favourable polar interactions that were found to be sufficiently strong to be effective in the presence of a polar aprotic solvent (DMSO) and even in pure methanol. Binding in water was very weak. The stronger binding interactions were found to be more susceptible to the effect of competitive solvents and compensated by unfavourable entropic effects. Thus, the best host in a less polar medium eventually was found to be the worst host in protic solvents. An interesting case of entropically driven binding was evidenced in methanol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5ob02641e | DOI Listing |
Int J Biol Macromol
January 2025
Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran.
In this research, tartaric acid was used to enhance the hydroxyapatite coating on AZ31 Mg alloy substrate through post-treatment and direct addition methods, and the corrosion resistance and biological activity of the samples were investigated. The parameters of concentration, immersion time, and pH of the coating solution were optimized by Electrochemical Impedance Spectroscopy (EIS) and Direct Current (DC) Polarization techniques. According to EIS results in the post-treatment method, tartaric acid with a concentration of 1 g/L, pH = 9 and immersion time of 2 min, increased the corrosion resistance of hydroxyapatite coating from 3630 to about 18,763 Ω.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.
View Article and Find Full Text PDFNanoscale
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China. Electronic address:
Acid adaptive response (AAR) is a survival mechanism that allows bacteria to develop enhanced stress tolerance. Our previous research identified AAR in Alicyclobacillus acidoterrestris, a thermo-acidophilic bacterium responsible for fruit juice spoilage. However, the roles of specific acidulants, adaptive temperatures, and acidic juice matrices in triggering AAR remain elusive.
View Article and Find Full Text PDFFood Chem
January 2025
Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China. Electronic address:
Grapevine white rot is a fungal disease that frequently occurs during the growing season, resulting in reduced fruit quality and severe yield losses. This work aimed to compare the differences in flavor profiles between wines made from different percentages of Coniella vitis-infected grapes by using FTIR spectrometer, sensory analysis, HS-SPME-GC-MS and HPLC-DAD. C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!