Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the mechanistic information on many kinetic processes requires the exploration of dynamic rotational information on the target object at the single particle (or molecule) level. In this work, we developed a new strategy, total internal reflection scattering (TIRS) microscopy, to determine the full three-dimensional (3D) angular information on a single gold nanorod (GNR) close to the liquid/solid interface. It was found that the 3D orientational information on individual GNR could be readily elucidated by using p-polarized TIRS illumination through deciphering the orientation-coded intensity distribution pattern in a single TIRS image. In comparison with the previously reported strategies, this method does not require complicated focal plane correction, affording a versatile pathway to track the rotational dynamics close to the interface in a high throughput manner. The methodology presented here, therefore, demonstrates a promising approach that can be applied to fluidic membranes, including membranes with polymers, bound proteins, and so on.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b04695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!