The lack of effective therapies for different neurodegenerative disorders has placed huge burdens on society. To overcome the restricted capacity of the central nervous system for regeneration, the promising alternative would be to use stem cells for more effective treatment of chronic degenerative and inflammatory neurological conditions and also of acute neuronal damage and from injuries or cerebrovascular diseases. The generation of induced pluripotent stem cells from somatic cells by the ectopic expression of specific transcription factors has provided the regenerative medicine field with a new tool for investigating and treating neurodegenerative diseases, including Alzheimer's disease (AD). This technology provides an alternative to traditional approaches, such as nuclear transfer and somatic cell fusion using embryonic stem cells. However, due to a problem in standardization of certain reprogramming techniques and systems research, the induced pluripotent stem cell-based technology is still in its infancy. The present paper is aimed at a brief review of the current status in modeling and cell-based therapies for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/revneuro-2015-0054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!