A novel regularization technique is developed for end-fired microendoscopic electrical impedance tomography using the dual-mesh method. The new regularization technique coupled with appropriate forward modeling and inverse mesh design is shown to produce dramatically improved reconstructions over previous methods. 3D absolute and difference reconstructions from measured saline tank and ex vivo adipose and muscle tissue experiments are used to validate the approach. The ex vivo experiments are used as a surrogate for prostate tissue, which is the primary clinical application for the probe. Inclusion center of mass errors were less than 0.47 mm for tank experiments with inclusion depths and radial offsets ranging less than 3 mm and 1.5 mm, respectively. Absolute 3D reconstructions on the tissue show quantitatively good accuracy and the ability to spatially distinguish small tissue features (adipose strands of approximately 2.5 mm in width). The reconstruction algorithm developed provides strong evidence for the promise of surgical margin detection using microendoscopic EIT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2016.2520907 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!