The development of bacterial strains that are resistant to multiple antibiotics has urged the need for new antibacterial therapies. An exciting approach to fight bacterial diseases is the use of antiadhesive agents capable to block the adhesion of the pathogens to host tissues, the first step of infection. We report the use of a novel atomic force microscopy (AFM) platform for quantifying the activity of antiadhesion compounds directly on living bacteria, thus without labeling or purification. Novel fullerene-based mannoconjugates bearing 10 carbohydrate ligands and a thiol bond were efficiently prepared. The thiol functionality could be exploited as a convenient handle to graft the multimeric species onto AFM tips. Using a combination of single-molecule and single-cell AFM assays, we demonstrate that, unlike mannosidic monomers, multivalent glycofullerenes strongly block the adhesion of uropathogenic Escherichia coli bacteria to their carbohydrate receptors. We expect that the nanoscopy technique developed here will help designing new antiadhesion drugs to treat microbial infections, including those caused by multidrug resistant organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5b04689DOI Listing

Publication Analysis

Top Keywords

platform quantifying
8
quantifying activity
8
activity antiadhesion
8
antiadhesion compounds
8
block adhesion
8
force nanoscopy
4
nanoscopy versatile
4
versatile platform
4
compounds targeting
4
targeting bacterial
4

Similar Publications

The Gender Disparity in Operative Opportunities for Trainee Surgeons: A Review.

J Surg Res

January 2025

Department of Surgery, The University of Melbourne, Parkville, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia.

Introduction: Assessing gender disparity in surgical trainees' operative opportunities and experience quantifies implicit gender bias and reflects a summation of many smaller biased interactions within the operating room environment. Highlighting gender disparity in surgery informs a platform for advocacy.

Methods: A systematic literature search was performed using Medline, Web of Science, OpenMD and Science Direct consistent with the Preferred Reporting Items for Systematic Reviews and Metanalysis guidelines.

View Article and Find Full Text PDF

Background: Surgeons' reliance on intraoperative fluoroscopy during vertebroplasty procedures has raised concerns regarding the level of patient and surgeon radiation. Navigation systems have shown a potential to reduce the overall patient and medical staff exposure during dose exposure studies. The main objective of this study was to determine whether the Surgivisio platform (eCential Robotics, France), a unified imaging and navigation platform, lowers the patient dose during routine clinical usage as compared with published fluoroscopy and other navigation options that are published in the literature.

View Article and Find Full Text PDF

Mononuclear Fe enzymes such as heme-containing cytochrome P450 enzymes catalyze a variety of C-H activation reactions under ambient conditions, and they represent an attractive platform for engineering reactivity through changes to the native enzyme. Using density functional theory, we study both native Fe and non-native group 8 (Ru, Os) and group 9 (Ir) metal centers in an active site model of P450. We quantify how changing the metal changes spin state preferences throughout the catalytic cycle.

View Article and Find Full Text PDF

Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).

Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.

View Article and Find Full Text PDF

The development of a print-at-home, low-cost, and miniaturized paper-based cell with 3D-printed electrodes using a 3D-printing pen and a bespoke conductive filament for detecting capsaicin in hot sauce is reported herein. The material cost of producing each electrode was less than £0.01.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!