Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ground electronic state potential energy surface of acryloyl chloride, CH2CHC(O)Cl, has been mapped using an automated transition state search procedure. A total of 174 minima, 527 TSs, and 20 different dissociation channels have been found. Among others, three novel HCl elimination pathways, namely, a five-center mechanism and two three-body dissociations (leading to CO + HCl + HCCH) have been discovered. While the bimodal character of the experimental HCl rotational distributions was previously attributed to the presence of two competing channels, our dynamics simulations show that a single channel, the four-center HCl elimination of CH2ClCHCO following a 1,3-Cl-shift of CH2CHC(O)Cl, displays a bimodal distribution in nearly prefect agreement with the experiment. Overall, our simulation results suggest that, as far as molecular elimination is concerned, this channel dominates in the 193 nm photodissociation of the molecule. The simulations also show evidence of non-IRC dynamics for this channel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp07759a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!