EEG Brain Wave Activity at Rest and during Evoked Attention in Children with Attention-Deficit/Hyperactivity Disorder and Effects of Methylphenidate.

Neuropsychobiology

Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.

Published: November 2016

Objective: The aim of this study was to assess baseline EEG brain wave activity in children with attention-deficit/hyperactivity disorder (ADHD) and to examine the effects of evoked attention and methylphenidate on this activity.

Method: Children with ADHD (n = 19) were tested while they were stimulant free and during a period in which they were on stimulant (methylphenidate) medication. Control subjects (n = 18) were tested once. EEG brain wave activity was tested both at baseline and during focussed attention. Attention was evoked and EEG brain wave activity was determined by means of the BioGraph Infiniti biofeedback apparatus.

Results: The main finding of this study was that control subjects and stimulant-free children with ADHD exhibited the expected reactivity in high alpha-wave activity (11-12 Hz) from baseline to focussed attention; however, methylphenidate appeared to abolish this reactivity.

Conclusion: Methylphenidate attenuates the normal cortical response to a cognitive challenge.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000441523DOI Listing

Publication Analysis

Top Keywords

eeg brain
16
brain wave
16
wave activity
16
evoked attention
8
children attention-deficit/hyperactivity
8
attention-deficit/hyperactivity disorder
8
attention methylphenidate
8
children adhd
8
control subjects
8
baseline focussed
8

Similar Publications

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Are neurasthenia and depression the same disease entity? An electroencephalography study.

BMC Psychiatry

January 2025

Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.

Background: The neurasthenia-depression controversy has lasted for several decades. It is challenging to solve the argument by symptoms alone for syndrome-based disease classification. Our aim was to identify objective electroencephalography (EEG) measures that can differentiate neurasthenia from major depressive disorder (MDD).

View Article and Find Full Text PDF

During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.

View Article and Find Full Text PDF

Many theories of time perception propose the existence of an internal pacemaker, and studies across behavioral, physiological, and neuroscience fields have explored this concept. Specifically, Spontaneous Motor Tempo (SMT), the most comfortable and natural tapping tempo for each individual, is thought to reflect this internal pacemaker's tempo. Changes in heart rate are also linked to time estimation, while Individual Alpha Frequency (IAF), the peak in the alpha range (8-13 Hz) observed in EEG, is reported to reflect the brain's temporal processing.

View Article and Find Full Text PDF

Dissociating the Roles of Alpha Oscillation Sub-Bands in Visual Working Memory.

Neuroimage

January 2025

Institute of Brain and Psychological Sciences, Sichuan Normal University, 610066 Sichuan, China; Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, 116029 Liaoning, China. Electronic address:

Alpha oscillations play a critical role in visual working memory (VWM), but the specific contributions of lower and upper alpha sub-bands remain unclear. To address this, we employed a whole-field change detection paradigm to investigate how alpha power modulation and decoding accuracy differ between these sub-bands in response to varying set sizes and spatial extents of memory arrays. Our results revealed that lower alpha (8-9 Hz) exhibits widespread event-related desynchronization (ERD) during the early maintenance phase, which increases with set size and reflects attentional allocation to individual memory items.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!