In this article, the functionalization of planar silicon with arsenic- and phosphorus-based azides was investigated. Covalently bonded and well-ordered alkyne-terminated monolayers were prepared from a range of commercially available dialkyne precursors using a well-known thermal hydrosilylation mechanism to form an acetylene-terminated monolayer. The terminal acetylene moieties were further functionalized through the application of copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions between dopant-containing azides and the terminal acetylene groups. The introduction of dopant molecules via this method does not require harsh conditions typically employed in traditional monolayer doping approaches, enabling greater surface coverage with improved resistance toward reoxidation. X-ray photoelectron spectroscopy studies showed successful dialkyne incorporation with minimal Si surface oxidation, and monitoring of the C 1s and N 1s core-level spectra showed successful azide-alkyne cycloaddition. Electrochemical capacitance-voltage measurements showed effective diffusion of the activated dopant atoms into the Si substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b11731 | DOI Listing |
Molecules
January 2025
College of Engineering and Technology, Southwest University, Chongqing 400715, China.
Based on density functional theory calculations, this study analyzed the gas-sensing performance of TiCT (T=O, F, OH) monolayers modified with precious metal atoms (Ag and Au) for HCHO and CH gas molecules. Firstly, stable structures of Ag- and Au-single-atom doped TiCT (T=O, F, OH) surfaces were constructed and then HCHO and CH gas molecules were set to approach the modified structures at different initial positions. The most stable adsorption structure was selected for further analysis of the adsorption energy, adsorption distance, charge transfer, charge deformation density, total density of states, and partial density of states.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Interdisciplinary Research Center for Construction and Building Materials, Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia. Electronic address:
Mercury (Hg) pollution poses a critical threat to human health and the environment, necessitating urgent control measures. This study introduces a novel modification method for the common zero-valent iron-carbon (ZVI-AC) galvanic cells using a two-step process, nonthermal (NTP) irradiation followed by targeted functionalization, aiming to enhance Hg adsorption potential by adjusting the physicochemical properties of the cells. The NTP irradiated functionalized adsorbent demonstrated superior Hg adsorption performance across various concentrations and pH variations.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Artificial Intelligence, Southwest University, Chongqing, 400715, China; Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, 430068, China. Electronic address:
In this first-principles study, we simulate the adsorption of SOF and SOF molecules on the pristine, Cu- and Rh-doped PdSe monolayer, in order to explore their potentials as novel gas sensors for status evaluation of the SF-insulation devices. Single Cu or Rh atom is doped by the replacement of a Se atom within the PdSe surface, with the formation energy of 0.40 and -0.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Electrical Engineering, Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China.
Exploring valleytronics in two-dimensional materials is of great significance for the development of advanced information devices. In this study, we investigate the valley polarization and electronic properties of V-doped 2H-phase Janus MoSeTe by using first-principles calculations. Our results reveal a remarkable valley spin splitting up to 60 meV, driven by the breaking of time-reversal symmetry due to the magnetic effect of V 3d orbitals.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Graphitic carbon nitride (g-CN) is a useful photocatalyst applied in various areas. However, it has some disadvantages that limit its applications. Therefore, doping and the construction of a heterojunction are beneficial methods to overcome these drawbacks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!