Our study focuses on the keystone species Acacia tortilis and is the first to investigate the effect of domestic ungulates and aridity on seed viability and germination over an extensive part of the Eastern Sahara. Bruchids infest its seeds and reduce their viability and germination, but ingestion by ruminant herbivores diminishes infestation levels and enhances/promotes seed viability and germination. The degree of these effects seems to be correlated with animal body mass. Significantly reduced numbers of wild ruminant ungulates have increased the potential importance of domestic animals and pastoral nomadism for the functionality of arid North African and Middle Eastern ecosystems. We sampled seeds (16,543) from A. tortilis in eight areas in three regions with different aridity and land use. We tested the effect of geography and sampling context on seed infestation using random effects logistic regressions. We did a randomized and balanced germination experiment including 1193 seeds, treated with different manure. Germination time and rates across geography, sampling context, and infestation status were analyzed using time-to-event analyses, Kaplan-Meier curves and proportional hazards Cox regressions. Bruchid infestation is very high (80%), and the effects of context are significant. Neither partial infestation nor adding manure had a positive effect on germination. There is a strong indication that intact, uningested seeds from acacia populations in the extremely arid Western Desert germinate more slowly and have a higher fraction of hard seeds than in the Eastern Desert and the Red Sea Hills. For ingested seeds in the pastoralist areas we find that intact seeds from goat dung germinate significantly better than those from camel dung. This is contrary to the expected body-mass effect. There is no effect of site or variation in tribal management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716523 | PMC |
http://dx.doi.org/10.1002/ece3.1851 | DOI Listing |
Plant Mol Biol
January 2025
College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Programa de Pós-graduação Em Recursos Genéticos Vegetais, Universidade Federal Do Recôncavo da Bahia (UFRB), Programa de Pós-graduação Em Recursos Genéticos Vegetais, Cruz das Almas, Bahia, Brazil.
The genus Wittmackia has 44 species distributed in two centers of diversity: the Brazilian clade and the Caribbean clade. The Brazilian clade includes 29 species, with geographic distribution concentrated in the Northeast of Brazil. This study reports the morphology, ultrastructure, pollen viability and stigma receptivity by different microscopy techniques of 23 species of the genus Wittmackia endemic to Brazil and occurring in Atlantic Forest areas.
View Article and Find Full Text PDFAn Acad Bras Cienc
December 2024
Universidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Biologia Celular e Molecular - PPGBCM, Centro de Biotecnologia, Av. Bento Gonçalves, 9500, Agronomia, 90650-001 Porto Alegre, RS, Brazil.
Materials (Basel)
November 2024
Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University (VILNIUSTECH), Saulėtekio al. 11, 10223 Vilnius, Lithuania.
The capacity of biological self-healing concrete (BSHC) to repair cracks relies on the sustained viability and metabolic function of bacteria embedded within the concrete. BSHC structures face significant risk in cold climates due to low temperatures and freeze-thaw (FT) cycles, during which freezing water can generate internal pressure that damages bacterial cells and diminishes their activity. A special feature of this study is the incorporation of bacterial spores within expanded clay aggregates, tested under varying environmental conditions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland.
Chitosan, a biopolymer derived from chitin, exhibits significant antifungal properties, making it a valuable compound for various applications in agriculture food preservation, and biomedicine. The present study aimed to assess the antifungal properties of chitosan-modified films using sol-gel derivatives (CS:ZnO) or graphene-filled chitosan, (CS:GO and CS:rGO) against two strains of fungi that are the most common cause of food spoilage: ATCC 9643 and DSM 1282. The results indicate important differences in the antifungal activity of native chitosan films and zinc oxide-modified chitosan films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!