The meta-cleavage pathway of catechol is a major mechanism for degradation of aromatic compounds. In this pathway, the aromatic ring of catechol is cleaved by catechol 2,3-dioxygenase and its product, 2-hydroxymuconic semialdehyde, is further metabolized by either a hydrolytic or dehydrogenative route. In the dehydrogenative route, 2-hydroxymuconic semialdehyde is oxidized to the enol form of 4-oxalocrotonate by a dehydrogenase and then further metabolized to acetaldehyde and pyruvate by the actions of 4-oxalocrotonate isomerase, 4-oxalocrotonate decarboxylase, 2-oxopent-4-enoate hydratase, and 4-hydroxy-2-oxovalerate aldolase. In this study, the isomerase, decarboxylase, and hydratase encoded in the TOL plasmid pWW0 of Pseudomonas putida mt-2 were purified and characterized. The 28-kilodalton isomerase was formed by association of extremely small identical protein subunits with an apparent molecular weight of 3,500. The decarboxylase and the hydratase were 27- and 28-kilodalton polypeptides, respectively, and were copurified by high-performance-liquid chromatography with anion-exchange, hydrophobic interaction, and gel filtration columns. The structural genes for the decarboxylase (xylI) and the hydratase (xylJ) were cloned into Escherichia coli. The elution profile in anion-exchange chromatography of the decarboxylase and the hydratase isolated from E. coli XylI+XylJ- and XylI-XylJ+ clones, respectively, were different from those isolated from XylI+ XylJ+ bacteria. This suggests that the carboxylase and the hydratase form a complex in vivo. The keto but not the enol form of 4-oxalocrotonate was a substrate for the decarboxylase. The product of decarboxylation was 2-hydroxypent-2,4-dienoate rather than its keto form, 2-oxopent-4-enoate. The hydratase acts on the former but not the latter isomer. Because 2-hydroxypent-2,4-dienoate is chemically unstable, formation of a complex between the decarboxylase and the hydratase may assure efficient transformation of this unstable intermediate in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC210496PMC
http://dx.doi.org/10.1128/jb.171.11.6251-6258.1989DOI Listing

Publication Analysis

Top Keywords

decarboxylase hydratase
16
chemically unstable
8
unstable intermediate
8
pseudomonas putida
8
2-hydroxymuconic semialdehyde
8
dehydrogenative route
8
enol form
8
form 4-oxalocrotonate
8
hydratase
8
2-oxopent-4-enoate hydratase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!