Background: Novel atrial fibrillation (AF) ablation tools have been designed to facilitate "single-shot" pulmonary vein (PV) isolation using multi-electrode or balloon-based catheters. However, in contrast to point-by-point radiofrequency ablation, these tools may be more dependent on suitable PV anatomy to achieve circumferential PV isolation.
Methods: Three hundred and twenty-two patients underwent gadolinium-enhanced cardiac magnetic resonance angiography to delineate PV anatomy prior to initial AF ablation. Long (a) and short (b) axis measurements of the PV orifice were used to calculate the eccentricity index of the PV ostium.
Results: Long axis dimensions of the left superior PV were 18.2 ± 3.3 mm, left inferior PV 17.7 ± 3.9 mm, right superior PV (RSPV) 20.4 ± 4.3, and right inferior PV 18.7 ± 4.7 mm. The long axis dimension of the RSPV was significantly larger than other PVs (p < 0.001). Forty-two patients (13 %) had at least one PV with a long axis dimension >25 mm and 16 patients (5 %) had at least one PV with a long axis dimension >28 mm. Left-sided PV ostia were significantly more ellipse-shaped than the right-sided PVs, which tended to be more spherical. A significant positive correlation was noted between increasing PV size and increased orifice eccentricity.
Conclusions: In this large cohort undergoing initial AF ablation, over 10 % of patients had at least one standard PV with a dimension >25 mm. Additionally, significant differences were noted between left- and right-sided veins with regard to orifice eccentricity. These findings have implications for the design of AF ablation tools and may account for differential isolation rates between PVs noted in some recent studies of novel ablation technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10840-016-0106-9 | DOI Listing |
Nanomaterials (Basel)
January 2025
Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
The combination of molybdenum disulfide (MoS) with plasmonic nanomaterials has opened up new possibilities in biological applications by combining MoS's biocompatibility and high surface area with the optical sensitivity of plasmonic metals. These MoS-plasmonic hybrid systems hold great promise in areas such as biosensing, bioimaging, and phototherapy, where their complementary properties facilitate improved detection, real-time visualization, and targeted therapeutic interventions. MoS's adjustable optical features, combined with the plasmon resonance of noble metals such as gold and silver, enhance signal amplification, enabling detailed imaging and selective photothermal or photodynamic therapies while minimizing effects on healthy tissue.
View Article and Find Full Text PDFInt J Hyperthermia
December 2025
Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA.
Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) breast therapies, the focal location must be characterized to guide successful treatment. Focal characterization is difficult because heterogeneous breast tissues introduce phase aberrations that blur and shift the focus and traditional guidance methods do not work in adipose tissues. The purpose of this work is to evaluate numerical simulations of MRgFUS that predict the focal location.
View Article and Find Full Text PDFRev Endocr Metab Disord
January 2025
Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
This review focuses on our current understanding of how growth hormone releasing hormone (GHRH): 1) stimulates GH release and synthesis from pituitary growth hormone (GH)-producing cells (somatotropes), 2) drives somatotrope proliferation, 3) is negatively regulated by somatostatin (SST), GH and IGF1, 4) is altered throughout lifespan and in response to metabolic challenges, and 5) analogues can be used clinically to treat conditions of GH excess or deficiency. Although a large body of early work provides an underpinning for our current understanding of GHRH, this review specifically highlights more recent work that was made possible by state-of-the-art analytical tools, receptor-specific agonists and antagonists, high-resolution in vivo and ex vivo imaging and the development of tissue (cell) -specific ablation mouse models, to paint a more detailed picture of the regulation and actions of GHRH.
View Article and Find Full Text PDFIntegr Med (Encinitas)
December 2024
Borandi Acupuncture, Saint George, UT.
Introduction: Chronic low back pain (CLBP), or low back pain lasting greater than 12 weeks, is a prevalent condition that profoundly impacts the quality of life in affected individuals. Traditional treatments - such as physical therapy, medications, injections, minimally invasive procedures, and surgery - often prove ineffective in a considerable number of cases, particularly when utilized as singular modalities. Given the complex biopsychosocial nature of CLBP, a multi-modality approach tailored to each patients' unique needs is essential.
View Article and Find Full Text PDFTech Vasc Interv Radiol
December 2024
Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Radiology, Weill Cornell Medical College, New York, NY. Electronic address:
Interventional radiology (IR) has aided advances in the diagnosis and treatment of lung pathologies through procedures such as percutaneous biopsy, tumor ablation and drainage of intra-thoracic collections. The success and safety of these interventions largely depend on timely and accurate needle/device placement. Additionally, there is an inherent need to minimize radiation exposure during image-guided procedures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!