Aminoacetonitrile (NH2CH2CN, AAN) is a molecule relevant for interstellar chemistry and the chemical evolution of life. It is a very important molecule in the Strecker diagram explaining the formation of amino acids. In the present investigation, dissociative electron attachment to NH2CN was studied in a crossed electron-molecular beams experiment in the electron energy range from about 0 to 17 eV. In this electron energy range, the following six anionic species were detected: C2H3N2(-), C2H2N2(-), C2H2N(-), C2HN(-), CN(-), and NH2(-). Possible reaction channels for all the measured negative ions are discussed, and the experimental results are compared with calculated thermochemical thresholds of the observed anions. Similar to other nitrile and aminonitrile compounds, the main anions detected were the negatively charged nitrile group, the dehydrogenated parent molecule, and the amino group. No parent anion was observed. Low anion yields were observed indicating that AAN is less prone to electron capture. Therefore, AAN can be considered to exhibit a relatively long lifetime under typical conditions in outer space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.5b09657 | DOI Listing |
Physiol Plant
January 2025
School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia.
The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002, China College of Medicine and Health Sciences, China Three Gorges University Yichang 443002, China.
In this study, the chemical components of Panacis Japonici Rhizoma extract and absorbed components in rats were identified by ultra-high performance liquid chromatography-quadrupole exactive orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The separation was performed by gradient elution on Waters UPLC BEH C_(18) column(2.1 mm×100 mm, 1.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil. Electronic address:
The growing demand for sustainable solutions in agriculture, driven by global population growth and increasing soil degradation, has intensified the search for sustainable soil conditioners. This study investigated the impact of adding nanoclay (NC) and nano lignin (NL) to thermoplastic starch (TPS) on its physical, chemical, and thermal properties, its effectiveness as a soil conditioner, and its resistance to UV-C degradation. TPS nanocomposites were prepared with varying NC (3 %, 5 %, 7 %) and NL (0.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Paris 75252, France.
Although silicon is a widespread constituent in dental materials, its possible influence on the formation and repair of teeth remains largely unexplored. Here, we studied the effect of two silicic acid-releasing nanomaterials, silica and bioglass, on a living model of pulp consisting of dental pulp stem cells seeded in dense type I collagen hydrogels. Silica nanoparticles and released silicic acid had little effect on cell viability and mineralization efficiency but impacted metabolic activity, delayed matrix remodeling, and led to heterogeneous cell distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!