Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: Oxidative stress and inflammation are implicated in the aging process and its related hepatic and renal function decline. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, CGA has shown in vivo and in vitro antioxidant properties.
Objective: The current study investigates the effects of protective effects of chlorogenic acid (CGA) on D-galactose-induced liver and kidney injury.
Materials And Methods: Hepatic and renal injuries were induced in a mouse model by subcutaneously injection of D-galactose (D-gal; 100 mg/kg) once a day for 8 consecutive weeks and orally administered simultaneously with CGA included in the food (200 mg/kg of diet). The liver and renal functions were examined. Histological analyses of liver and kidney were done by haematoxylin and eosin staining. The oxidative stress markers and pro-inflammatory cytokines in the liver and the kidney were measured. Results CGA significantly reduced the serum aminotransferase, serum creatinine (SCr) and blood urea nitrogen (BUN) levels in D-gal mice (p <0.05). CGA also restored superoxide dismutase, catalase, and malondialdehyde levels and decreased glutathione content in the liver and kidney in D-gal mice (p <0.05). Improvements in liver and kidney were also noted in histopathological studies. CGA reduced tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) protein levels in the liver and kidney in D-gal mice (p <0.05).
Discussion And Conclusion: These findings suggest that CGA attenuates D-gal-induced chronic liver and kidney injury and that this protection may be due to its antioxidative and anti-inflammatory activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132915 | PMC |
http://dx.doi.org/10.3109/13880209.2015.1093510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!