Increasing the Richness of Culturable Arsenic-Tolerant Bacteria from Theonella swinhoei by Addition of Sponge Skeleton to the Growth Medium.

Microb Ecol

Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel.

Published: May 2016

Theonella swinhoei is an arsenic hyper-accumulator sponge, harboring a multitude of associated bacteria. These bacteria reside in the mesohyl, the dense extracellular matrix of the sponge. Previous elemental analysis of separated cell fractions from the sponge had determined that arsenic is localized to the associated bacteria. Subsequently, sponge-associated arsenic-tolerant bacteria were isolated here and grouped into 15 operational taxonomic units (OTUs, 97% similarity). Both culture-dependent and culture-independent work had revealed that T. swinhoei harbors a highly diverse bacterial community. It was thus hypothesized the acclimation of bacteria in the presence of a sponge skeleton, better mimicking its natural environment, would increase the yield of isolation of sponge-associated bacteria. Using seven modularly designed media, 380 bacteria isolates were grown and grouped into 22 OTUs. Inclusion of sponge skeleton in the growth medium promoted bacterial growth in all seven media, accounting for 20 of the 22 identified OTUs (the other two in a medium without skeleton). Diversity and richness indices were calculated for each treatment or combination of treatments with shared growth parameters. Integrating data inherent in the modularly designed media with the ecological indices led to the formation of new hypotheses regarding the aeration conditions and expected arsenic form in situ. Both aerobic and anoxic conditions are expected to occur in the sponge (temporally and/or spatially). Arsenate is expected to be the dominant (or even the only) arsenic form in the sponge.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-015-0726-0DOI Listing

Publication Analysis

Top Keywords

sponge skeleton
12
bacteria
8
arsenic-tolerant bacteria
8
theonella swinhoei
8
sponge
8
skeleton growth
8
growth medium
8
associated bacteria
8
modularly designed
8
designed media
8

Similar Publications

The purpose of this case report is to examine the management of vestibular bone fenestration during alveolar socket preservation using the Periosteal Inhibition (PI) approach. Here, for the first time, the PI technique, which has been shown to be successful in maintaining intact cortical bone, is examined in the context of a bone defect. : After an atraumatic extraction of a damaged tooth, a vestibular bone fenestration was discovered in the 62-year-old male patient.

View Article and Find Full Text PDF

A filter inspired by deep-sea glass sponges for oil cleanup under turbulent flow.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.

Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (E.

View Article and Find Full Text PDF

Polyurethane sponge is frequently selected as a substrate material for constructing flexible compressible sensors due to its excellent resilience and compressibility. However, being highly hydrophilic and flammable, it not only narrows the range of use of the sensor but also poses a great potential threat to human safety. In this paper, a conductive flexible piezoresistive sensor (CHAP-PU) with superhydrophobicity and high flame retardancy was prepared by a simple dip-coating method using A-CNTs/HGM/ADP coatings deposited on the surface of a sponge skeleton and modified with polydimethylsiloxane.

View Article and Find Full Text PDF

Highly Compressible Micro/Nanofibrous Sponges with Thin-Walled Cavity Structures Enable Low-Frequency Noise Reduction.

Nano Lett

December 2024

Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China.

Increasing noise pollution has generated a tremendous threat to human health and incurred great economic losses. However, most existing noise-absorbing materials present a significant challenge in achieving lightweight, robust mechanical stability, and efficient low-frequency (<1000 Hz) noise reduction. Herein, we create highly compressible micro/nanofibrous sponges with thin-walled cavity structures for efficient noise reduction through electrospinning and dispersion casting.

View Article and Find Full Text PDF

Three-dimensionally structured MoS@biochar breaks through the bottleneck in antibiotic wastewater treatment: Greater efficiency and self-motivated oxidation pathway.

J Hazard Mater

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:

Two-dimensional (2D) MoS has been widely used to remove antibiotics. However, low selectivity for antibiotic pollutants, dependence on applied energy and oxidant, and secondary contamination are still the bottlenecks of this system for treating antibiotic wastewater. In this study, we proposed a three-dimensional (3D) material (3MoS/BMBC@MF) based on MoS and biochar with melamine sponge as the backbone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!