The cancer genome is abnormal genome, and the ability to monitor its sequence had undergone a technological revolution. Yet prognosis and diagnosis remain an expert-based decision, with only limited abilities to provide machine-based decisions. We introduce a heterogeneity-based method for stratifying and visualizing whole-genome sequencing (WGS) reads. This method uses the heterogeneity within WGS reads to markedly reduce the dimensionality of next-generation sequencing data; it is available through the tool HiBS (Heterogeneity-Based Subclassification) that allows cancer sample classification. We validated HiBS using >200 WGS samples from nine different cancer types from The Cancer Genome Atlas (TCGA). With HiBS, we show progress with two WGS related issues: (i) differentiation between normal (NB) and tumor (TP) samples based solely on the information structure of their WGS data, and (ii) identification of specific regions of chromosomal amplification/deletion and their association with tumor stage. By comparing results to those obtained through available WGS analyses tools, we demonstrate some of the novelties obtained by the approach implemented in HiBS and also show nearly perfect normal/tumor classification, used to identify known and unknown chromosomal aberrations. Finally, the HiBS index has been associated with breast cancer tumor stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872078PMC
http://dx.doi.org/10.1093/nar/gkw031DOI Listing

Publication Analysis

Top Keywords

cancer genome
8
wgs reads
8
tumor stage
8
cancer
6
wgs
6
hibs
5
quantification read
4
read species
4
species behavior
4
genome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!