Chalcogenidometalates exhibit rich and diverse structures and properties applicable to ion exchange, thermoelectrics, photocatalysis, nonlinear optics, and so on. This personal account summarizes our recent progress in constructing chalcogenidometalates by combining metal coordination tetrahedra and the asymmetric coordination geometries of Sb(3+) in the presence of organic species (typically organic amines and metal-organic amine complexes), which has been demonstrated as an effective strategy for synthesizing chalcogenidometalates with diversified structures and interesting properties. The linkage modes of asymmetric SbQn (n = 3, 4) geometries and group 13 (or 14) metal coordination tetrahedra are analyzed, and the secondary building units (SBUs), with different compositions and architectures, are clarified. The crucial role and function of organic species in the formation of chalcogenidometalates are explored, with an emphasis on their powerful structure-directing features. In particular, some chalcogenidometalates in this family exhibit excellent ion-exchange properties for Cs(+) and/or Sr(2+) ions; the factors affecting ion-exchange properties are discussed to understand the underlying ion-exchange mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.201500243 | DOI Listing |
ACS Nano
January 2025
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China.
Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Energy and Environment, Southeast University, Nanjing 210096, China.
The broad temperature adaptability associated with the desolvation process remains a formidable challenge for organic electrolytes in rechargeable metal batteries, especially under low-temperature (LT) conditions. Although a traditional approach involves utilizing electrolytes with a high degree of anion participation in the solvation structure, known as weakly solvation electrolytes (WSEs), the solvation structure of these electrolytes is highly susceptible to temperature fluctuations, potentially undermining their LT performance. To address this limitation, we have devised an innovative electrolyte that harnesses the interplay between solvent molecules, effectively blending strong and weak solvents while incorporating anion participation in a solvation structure that remains mostly unchanged by temperature variations.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
Symmetry breaking is ubiquitous in chemical transformations and affects various physicochemical properties of materials and molecules; Jahn-Teller (JT) distortion of hexa-coordinated transition-metal-ligand complexes falls within this paradigm. An uneven occupancy of degenerate 3d-orbitals forces the complex to adopt an axially elongated or compressed geometry, lowering the symmetry of the system and lifting the degeneracy. Coordination complexes of Cu are known to exhibit axial elongation, while compression is far less common, although this may be due to the lack of rigorous experimental verification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!