As participation in women's soccer continues to grow and the longevity of female athletes' careers continues to increase, prevention and care for mTBI in women's soccer has become a major concern for female athletes since the long-term risks associated with a history of mTBI are well documented. Among women's sports, soccer exhibits among the highest concussion rates, on par with those of men's football at the collegiate level. Head impact monitoring technology has revealed that "concussive hits" occurring directly before symptomatic injury are not predictive of mTBI, suggesting that the cumulative effect of repetitive head impacts experienced by collision sport athletes should be assessed. Neuroimaging biomarkers have proven to be valuable in detecting brain changes that occur before neurocognitive symptoms in collision sport athletes. Quantifying the relationship between changes in these biomarkers and head impacts experienced by female soccer athletes may prove valuable to developing preventative measures for mTBI. This study paired functional magnetic resonance imaging with head impact monitoring to track cerebrovascular reactivity changes throughout a season and to test whether the observed changes could be attributed to mechanical loading experienced by female athletes participating in high school soccer. Marked cerebrovascular reactivity changes were observed in female soccer athletes, relative both to non-collision sport control measures and pre-season measures and were localized to fronto-temporal aspects of the brain. These changes persisted 4-5 months after the season ended and recovered by 8 months after the season. Segregation of the total soccer cohort into cumulative loading groups revealed that population-level changes were driven by athletes experiencing high cumulative loads, although athletes experiencing lower cumulative loads still contributed to group changes. The results of this study imply a non-linear relationship between cumulative loading and cerebrovascular changes with a threshold, above which the risk, of injury likely increases significantly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11682-016-9509-6 | DOI Listing |
Front Neurol
December 2024
Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
Background: Little is known about the relationship between lipoprotein (a) [Lp(a)] and cerebral white matter hyperintensities (WMH). The aim of the study was to examine if elevated Lp(a) levels are associated with higher burden of WMH.
Methods: We retrospectively investigated associations between Lp(a) and the burden of WMH among patients with confirmed diagnosis of acute ischemic stroke or transient ischemic attacks.
Dev Neurobiol
January 2025
Department of Cerebrovascular Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
Growth differentiation factor 15 (GDF15) can be induced under various stress conditions. This study aimed to explore the role of GDF15 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced HT22 cells. OGD/R was employed to induce the HT22 cell model, and GDF15 expression was upregulated via transfection.
View Article and Find Full Text PDFZhonghua Yu Fang Yi Xue Za Zhi
December 2024
Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing100020, China.
This study aimed to analyze the clinical characteristics and prognosis of Takayasu's arteritis (TA) with carotid artery occlusion in children. This study collected clinical data and follow-up information on the first diagnosis and treatment of c-TA combined with carotid artery occlusion in pediatric patients at the Children's Hospital affiliated with the Capital Institute of Pediatrics and Inner Mongolia Medical University Affiliated Hospital from 2013 to 2023. This study included four female patients with a mean age of (13.
View Article and Find Full Text PDFMedicine (Baltimore)
December 2024
Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Emergency intravascular interventional therapy is the most effective approach to rapidly restore blood flow and manage occlusion of major blood vessels during the initial phase of acute ischemic stroke. Nevertheless, several patients continue to experience ineffective reperfusion or cerebral no-reflow phenomenon, that is, hypoperfusion of cerebral blood supply after treatment. This is primarily attributed to downstream microcirculation disturbance.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Key Laboratory of Chinese Medicine for Cardiovascular and Cerebrovascular Disease, Hangzhou, China. Electronic address:
Ethnopharmacological Relevance: The combination of Astragalus membranaceus (Huang Qi in Chinese, HQ) and Carthamus tinctorius (Hong Hua in Chinese, HH) is commonly employed for treating ischemic stroke (IS). The heavily oxidative environment of cerebral ischemia/reperfusion injury (CI/RI) promotes activation of poly (ADP-ribose) polymerase-1 (PARP-1), which initiates parthanatos, a regulated cell death mode. Reactive oxygen species (ROS) bursting in mitochondrial respiratory chain complex I (Complex I) is a key cause of CI/RI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!