Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The head and neck squamous cell carcinoma (HNSCC) transcriptome has been profiled extensively, nevertheless, identifying biomarkers that are clinically relevant and thereby with translational benefit, has been a major challenge. The objective of this study was to use a meta-analysis based approach to catalog candidate biomarkers with high potential for clinical application in HNSCC. Data from publically available microarray series (N = 20) profiled using Agilent (4X44K G4112F) and Affymetrix (HGU133A, U133A_2, U133Plus 2) platforms was downloaded and analyzed in a platform/chip-specific manner (GeneSpring software v12.5, Agilent, USA). Principal Component Analysis (PCA) and clustering analysis was carried out iteratively for segregating outliers; 140 normal and 277 tumor samples from 15 series were included in the final analysis. The analyses identified 181 differentially expressed, concordant and statistically significant genes; STRING analysis revealed interactions between 122 of them, with two major gene clusters connected by multiple nodes (MYC, FOS and HSPA4). Validation in the HNSCC-specific database (N = 528) in The Cancer Genome Atlas (TCGA) identified a panel (ECT2, ANO1, TP63, FADD, EXT1, NCBP2) that was altered in 30% of the samples. Validation in treatment naïve (Group I; N = 12) and post treatment (Group II; N = 12) patients identified 8 genes significantly associated with the disease (Area under curve>0.6). Correlation with recurrence/re-recurrence showed ANO1 had highest efficacy (sensitivity: 0.8, specificity: 0.6) to predict failure in Group I. UBE2V2, PLAC8, FADD and TTK showed high sensitivity (1.00) in Group I while UBE2V2 and CRYM were highly sensitive (>0.8) in predicting re-recurrence in Group II. Further, TCGA analysis showed that ANO1 and FADD, located at 11q13, were co-expressed at transcript level and significantly associated with overall and disease-free survival (p<0.05). The meta-analysis approach adopted in this study has identified candidate markers correlated with disease outcome in HNSCC; further validation in a larger cohort of patients will establish their clinical relevance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726811 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147409 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!