Demilitarization of waste explosives on a commercial scale has become an important issue in many countries, and this has created a need for research in this area. TNT, RDX and Composition B have been used as military explosives, and they are very sensitive to thermal shock. For the safe waste treatment of these high-energy and highly sensitive explosives, the most plausible candidate suggested has been thermal decomposition in a rotary kiln. This research examines the safe treatment of waste TNT, RDX and Composition B in a rotary kiln type incinerator with regard to suitable operating conditions. Thermal decomposition in this study includes melting, 3 condensed phase reactions in the liquid phase and 263 gas phase reactions. Rigorous mathematical modeling and dynamic simulation for thermal decomposition were carried out for analysis of dynamic behavior in the reactor. The results showed time transient changes of the temperature, components and mass of the explosives and comparisons were made for the 3 explosives. It was concluded that waste explosives subject to heat supplied by hot air at 523.15K were incinerated safely without any thermal detonation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2015.12.061 | DOI Listing |
Nanotechnology
December 2024
CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.
Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).
View Article and Find Full Text PDFGels
December 2024
School of Resource and Safety Engineering, Central South University, Changsha 410083, China.
This research enhances the thermal safety of hydrophobic silica aerogel (HSA) by integrating layered double oxides (LDOs). XRD and FTIR confirm that the introduction of LDOs does not affect the formation of SA. The LDO/SA composites demonstrate a low density (0.
View Article and Find Full Text PDFGels
December 2024
Research Center for Green Energy Systems, Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Republic of Korea.
This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China. Electronic address:
Due to their high energy density, low cost, and environmental friendliness, aqueous zinc-ion batteries are considered a potential alternative to Li-ion batteries. However, dendrite growth and parasitic reactions of water molecules limit their practical applications. Herein, an ionic liquid additive, 1-butyl-3-methylimidazolium Bis(fluorosulfonyl)imide (BMImFSI), is introduced to regulate the electrical double layer (EDL).
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States.
Highly energetic boron (B) particles embedded in hydroxyl-terminated polybutadiene (HTPB) thermosetting polymers represent stable solid-state fuel. Laser-heating of levitated B/HTPB and pure HTPB particles in a controlled atmosphere revealed spontaneous ignition of B/HTPB in air, allowing for examination of the exclusive roles of boron. These ignition events are probed via simultaneous spectroscopic diagnostics: Raman and infrared spectroscopy, temporally resolved high-speed optical and infrared cameras, and ultraviolet-visible (UV-vis) spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!