Effects of water-aging on self-healing dental composite containing microcapsules.

J Dent

Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA. Electronic address:

Published: April 2016

Objectives: The objectives of this study were to develop a self-healing dental composite containing poly(urea-formaldehyde) (PUF) shells with triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxyethyl-p-toluidine (DHEPT) as healing liquid, and to investigate the mechanical properties of the composite and its self-healing efficacy after water-aging for 6 months.

Methods: PUF microspheres were synthesized encapsulating a TEGDMA-DHEPT healing liquid. Composite containing 30% of a resin matrix and 70% of glass fillers by mass was incorporated with 0%, 2.5%, 5%, 7.5% and 10% of microcapsules. A flexural test was used to measure flexural strength and elastic modulus. A single edge V-notched beam method was used to measure fracture toughness (KIC) and self-healing efficacy. Specimens were water-aged at 37 °C for 1 day to 6 months and then tested for self-healing. Fractured specimens were healed while being immersed in water to examine self-healing efficacy, in comparison with that in air.

Results: Incorporation of up to 7.5% of microcapsules into the resin composite achieved effective self-healing, without adverse effects on the virgin mechanical properties of the composite (p>0.1). An excellent self-healing efficacy of 64-77% recovery was obtained (mean±sd; n=6). Six months of water-aging did not decrease the self-healing efficacy compared to 1 day (p>0.1). Exposure to water did not decrease the healing efficacy, compared to that healed in air (p>0.1).

Conclusions: A composite was developed with excellent self-healing efficacy even while being immersed in water. The self-healing efficacy did not decrease with increasing water-aging time for 6 months.

Clinical Significance: The novel self-healing composite may be promising for dental applications to heal cracks, resist fracture, and increase the durability and longevity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116149PMC
http://dx.doi.org/10.1016/j.jdent.2016.01.008DOI Listing

Publication Analysis

Top Keywords

self-healing efficacy
28
self-healing
12
self-healing dental
8
composite
8
dental composite
8
healing liquid
8
mechanical properties
8
properties composite
8
efficacy
8
immersed water
8

Similar Publications

Polyvinyl alcohol/chitosan hydrogel based on deep eutectic solvent for promoting methicillin-resistant Staphylococcus aureus-infected wound healing.

Int J Biol Macromol

January 2025

School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:

Bacterial-infected wounds usually lead to slow wound healing due to increased inflammation, especially wounds infected by drug-resistant bacteria, which is a serious challenge in the biomedical field. Traditional antimicrobial strategies such as antibiotics lead to a significant increase in drug-resistant strains and have limited efficacy. Therefore, there is an urgent need to develop multifunctional dressings with excellent antibacterial activity and promotion of wound healing.

View Article and Find Full Text PDF

The remediation of oil-contaminated soil poses significant environmental challenges, often necessitating innovative approaches for effective and sustainable solutions. This study focuses on the synthesis, characterisation, and application of biodegradable capsules loaded with surfactant for enhanced oil remediation of a clean sand. By controlling the release properties of capsules, the research aims to overcome the limitations of conventional surfactant-based remediation methods, such as rapid washout and reduced efficacy over time.

View Article and Find Full Text PDF

Maternal smoking increases adverse risks for both the mother's pregnancy and the unborn child and remains disproportionately high among some Indigenous peoples. Decreasing smoking among pregnant Indigenous women has been identified as a health priority in New Zealand because of wide inequities in smoking-related harms. Using pre- and post-intervention questionnaires, this feasibility study assessed the acceptability and potential efficacy of a novel cessation program designed for Indigenous women by Indigenous experts utilizing traditional knowledge and practice.

View Article and Find Full Text PDF

Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL).

View Article and Find Full Text PDF

Bifunctional modified bacterial cellulose-based hydrogel through sequence-dependent crosslinking towards enhanced antibacterial and cutaneous wound healing.

Int J Biol Macromol

January 2025

Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:

Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!