A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNA Adduct Formation from Metabolic 5'-Hydroxylation of the Tobacco-Specific Carcinogen N'-Nitrosonornicotine in Human Enzyme Systems and in Rats. | LitMetric

N'-Nitrosonornicotine (NNN) is carcinogenic in multiple animal models and has been evaluated as a human carcinogen. NNN can be metabolized by cytochrome P450s through two activation pathways: 2'-hydroxylation and 5'-hydroxylation. While most previous studies have focused on 2'-hydroxylation in target tissues of rats, available evidence suggests that 5'-hydroxylation is a major activation pathway in human enzyme systems, in nonhuman primates, and in target tissues of some other rodent carcinogenicity models. In the study reported here, we investigated DNA damage resulting from NNN 5'-hydroxylation by quantifying the adduct 2-(2-(3-pyridyl)-N-pyrrolidinyl)-2'-deoxyinosine (py-py-dI). In rats treated with NNN in the drinking water (7-500 ppm), py-py-dI was the major DNA adduct resulting from 5'-hydroxylation of NNN in vivo. Levels of py-py-dI in the lung and nasal cavity were the highest, consistent with the tissue distribution of CYP2A3. In rats treated with (S)-NNN or (R)-NNN, the ratios of formation of (R)-py-py-dI to (S)-py-py-dI were not the expected mirror image, suggesting that there may be a carrier for one of the unstable intermediates formed upon 5'-hydroxylation of NNN. Rat hepatocytes treated with (S)- or (R)-NNN or (2'S)- or (2'R)-5'-acetoxyNNN exhibited a pattern of adduct formation similar to that of live rats. In vitro studies with human liver S9 fraction or human hepatocytes incubated with NNN (2-500 μM) demonstrated that py-py-dI formation was greater than the formation of pyridyloxobutyl-DNA adducts resulting from 2'-hydroxylation of NNN. (S)-NNN formed more total py-py-dI adducts than (R)-NNN in human liver enzyme systems, which is consistent with the critical role of CYP2A6 in the 5'-hydroxylation of NNN in human liver. The results of this study demonstrate that the major DNA adduct resulting from NNN metabolism by human enzymes is py-py-dI and provide potentially important new insights into the metabolic activation of NNN in rodents and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805523PMC
http://dx.doi.org/10.1021/acs.chemrestox.5b00520DOI Listing

Publication Analysis

Top Keywords

dna adduct
12
enzyme systems
12
5'-hydroxylation nnn
12
human liver
12
nnn
11
adduct formation
8
human
8
human enzyme
8
target tissues
8
rats treated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!