Inhibition of tau aggregation using a naturally-occurring cyclic peptide scaffold.

Eur J Med Chem

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.

Published: February 2016

Disulfide-rich macrocyclic peptides are emerging as versatile scaffolds for the development of stable biochemical tools. This potential is due to the combination of their structural stability and range of bioactivities. Here, we explored the activity of these peptides on fibril growth of the hexapeptide Ac-VQIVYK-NH2 (AcPHF6), which is a tau-derived peptide that has been widely used to understand the pathological mechanism of numerous tauopathies, including Alzheimer's disease. Of the cyclic peptides tested, SFTI-1 and kB1 showed an inherent ability to inhibit AcPHF6 fibril formation. Using an end-capping strategy and combining it with a molecular grafting approach, we demonstrated that SFTI-1 could be used as a starting point to design more potent fibril inhibitors. We further identified chemical and structural features of SFTI-1 and its analogues that underpin their inhibitory activity. The ability to inhibit fibril growth using the strategy employed herein supports the 'steric zipper' model of AcPHF6 fibril formation and shows that naturally-occurring cyclic peptides have potential as drug leads or molecular probes for understanding fibril formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2016.01.006DOI Listing

Publication Analysis

Top Keywords

fibril formation
12
naturally-occurring cyclic
8
fibril growth
8
cyclic peptides
8
ability inhibit
8
acphf6 fibril
8
fibril
6
inhibition tau
4
tau aggregation
4
aggregation naturally-occurring
4

Similar Publications

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

The self-assembly of rice glutelin (RG) into RG fibrils (RGFs) represents a promising strategy for enhancing its functional properties. In this study, we investigated the effects of ultrasonic pretreatment on the fibrillation kinetics, structural characteristics, and functional properties of RGFs. The results indicated that ultrasonic pretreatment facilitated the unfolding of RG, resulting in an increased H and β-sheet, thereby accelerating the formation of RGFs and enhancing the fibril conversion rate.

View Article and Find Full Text PDF

Parkinson's disease (PD), a neurodegenerative disorder without cure, is characterized by the pathological aggregation of α-synuclein (α-Syn) in Lewy bodies. Classic deposition pathway and condensation pathway contribute to α-Syn aggregation, and liquid-liquid phase separation is the driving force for condensate formation, which subsequently undergo liquid-solid phase separation to form toxic fibrils. Traditional Chinese Medicine (TCM) has a long history in treating neurodegenerative disease, herein; we identified chemicals from herbs that inhibit α-Syn aggregation.

View Article and Find Full Text PDF

Background/objectives: Very high-power and short-duration (vHPSD) ablation with QDOT MICRO™ facilitates speedy and safe ablation for pulmonary vein isolation. A brief time interval between ablating two neighboring sites with vHPSD may potentially influence the size and geometry of the lesions. This study evaluates lesion formation when delivering adjacent applications using vHPSD at various inter-lesion times (ILTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!