Cross-Species Analysis of Protein Dynamics Associated with Hydride and Proton Transfer in the Catalytic Cycle of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase.

Biochemistry

Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.

Published: February 2016

Experimental interrogation of the relationship between protein dynamics and enzyme catalysis is challenging. Light-activated protochlorophyllide oxidoreductase (POR) is an excellent model for investigating this relationship because photoinitiation of the reaction cycle enables coordinated turnover in a "dark-assembled" ternary enzyme-substrate complex. The catalytic cycle involves sequential hydride and proton transfers (from NADPH and an active site tyrosine residue, respectively) to the substrate protochlorophyllide. Studies with a limited cross-species subset of POR enzymes (n = 4) have suggested that protein dynamics associated with hydride and proton transfer are distinct [Heyes, D. J., Levy, C., Sakuma, M., Robertson, D. L., and Scrutton, N. S. (2011) J. Biol. Chem. 286, 11849-11854]. Here, we use steady-state assays and single-turnover laser flash spectroscopy to analyze hydride and proton transfer dynamics in an extended series of POR enzymes taken from many species, including cyanobacteria, algae, embryophytes, and angiosperms. Hydride/proton transfer in all eukaryotic PORs is faster compared to prokaryotic PORs, suggesting active site architecture has been optimized in eukaryotic PORs following endosymbiosis. Visible pump-probe spectroscopy was also used to demonstrate a common photoexcitation mechanism for representative POR enzymes from different branches of the phylogenetic tree. Dynamics associated with hydride transfer are localized to the active site of all POR enzymes and are conserved. However, dynamics associated with proton transfer are variable. Protein dynamics associated with proton transfer are also coupled to solvent dynamics in cyanobacterial PORs, and these networks are likely required to optimize (shorten) the donor-acceptor distance for proton transfer. These extended networks are absent in algal and plant PORs. Our analysis suggests that extended networks of dynamics are disfavored, possibly through natural selection. Implications for the evolution of POR and more generally for other enzyme catalysts are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.5b01355DOI Listing

Publication Analysis

Top Keywords

proton transfer
24
dynamics associated
20
protein dynamics
16
hydride proton
16
por enzymes
16
associated hydride
12
active site
12
dynamics
9
transfer
8
catalytic cycle
8

Similar Publications

This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.

View Article and Find Full Text PDF

A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe exhibited good performance in key parameters in bioassays such as sensitivity, specificity, and response time.

View Article and Find Full Text PDF

The nicotinamide adenine dinucleotide phosphate (NADPH) dehydrogenase (NDH) complex is crucial for photosynthetic cyclic electron flow and respiration, transferring electrons from ferredoxin to plastoquinone while transporting H across the chloroplast membrane. This process boosts adenosine triphosphate production, regardless of NADPH levels. In flowering plants, NDH forms a supercomplex with photosystem I, enhancing its stability under high light.

View Article and Find Full Text PDF

Prognosticating WHO/ISUP grade in clear cell renal cell carcinoma: Insights from amide proton transfer-weighted MRI.

Magn Reson Imaging

January 2025

Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai 200065, China. Electronic address:

Background: Preoperative prediction of clear cell renal cell carcinoma (ccRCC) grade can support optimal selection of surgical resection strategies. Currently, there is no effective preoperative method for accurately assessing the histologic grade of ccRCC. More precise, non-invasive prediction methods are needed.

View Article and Find Full Text PDF

Non-antibiotic conditions, including organophosphorus pesticides (OPPs), have been implicated in the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) to varying degrees. While most studies focus on the toxicity of OPPs to humans and animals, their roles in ARG dissemination remain largely unexplored. In this study, we investigate the effects and involved molecular mechanisms of environmentally relevant concentrations of malathion and dimethoate, two representative OPPs, on plasmid-mediated conjugal transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!