Alisertib (MLN8237, ALS), an Aurora kinase A (AURKA) inhibitor, exerts potent anti-tumor effects in the treatment of solid tumor and hematologic malignancies in preclinical and clinical studies. However, the fully spectrum of molecular targets of ALS and its anticancer effect in the treatment of chronic myeloid leukemia (CML) are not clear. This study aimed to examine the proteomic responses to ALS treatment and unveil the molecular interactome and possible mechanisms for its anticancer effect in K562 cells using stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data identified that ALS treatment modulated the expression of 1541 protein molecules (570 up; 971 down). The pathway analysis showed that 299 signaling pathways and 459 cellular functional proteins directly responded to ALS treatment in K562 cells. These targeted molecules and signaling pathways were mainly involved in cell growth and proliferation, cell metabolism, and cell survival and death. Subsequently, the effects of ALS on cell cycle distribution, apoptosis, and autophagy were verified. The flow cytometric analysis showed that ALS significantly induced G2/M phase arrest and the Western blotting assays showed that ALS induced apoptosis via mitochondria-dependent pathway and promoted autophagy with the involvement of PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways in K562 cells. Collectively, this study provides a clue to quantitatively evaluate the proteomic responses to ALS and assists in globally identifying the potential molecular targets and elucidating the underlying mechanisms of ALS for CML treatment, which may help develop new efficacious and safe therapies for CML treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697722 | PMC |
Unlabelled: Pre-mRNA splicing, carried out in the nucleus by a large ribonucleoprotein machine known as the spliceosome, is functionally and physically coupled to the mRNA surveillance pathway in the cytoplasm called nonsense mediated mRNA decay (NMD). The NMD pathway monitors for premature translation termination signals, which can result from alternative splicing, by relying on the exon junction complex (EJC) deposited on exon-exon junctions by the spliceosome. Recently, multiple genetic screens in human cell lines have identified numerous spliceosome components as putative NMD factors.
View Article and Find Full Text PDFFront Immunol
January 2025
Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
Introduction: Ovarian cancer is a lethal disease with low survival rates for women diagnosed in advanced stages. Current cancer immunotherapies are not efficient in ovarian cancer, and there is therefore a significant need for novel treatment options. The β-galactoside-binding lectin, Galectin-3, is involved in different immune processes and has been associated with poor outcome in various cancer diagnoses.
View Article and Find Full Text PDFChemistry
January 2025
Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
Fundam Clin Pharmacol
February 2025
Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
Background: Chalcones have been described in the literature as promising antineoplastic compounds.
Objectives: Therefore, the objective of this study was to analyze the cytotoxic effect of 23 synthetic chalcones on human acute leukemia (AL) cell lines (Jurkat and K562).
Methods: Cytotoxicity assessment was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.
Zhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Department of Pediatrics, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!