Objectives: The relative size of the infraorbital foramen (IOF) has been used to infer the ecology of extinct primates for several decades. Primates have relatively smaller IOFs than most other mammals, which may result from the fact that they pre-process and manipulate food with their hands rather than their muzzles. In primates, relative IOF area co-varies with diet, where insectivores and folivores have relatively smaller IOFs than frugivores. We wanted to determine whether the observed patterns associated with IOF variation hold across other orders.

Materials And Methods: We examined how relative IOF area differs among marsupials occupying different ecological niches. Marsupials were chosen because they converge with primates in both ecology and morphology, but unlike primates, some marsupials approach and pre-process foods only with their muzzles. We measured IOF area and cranial lengths from 72 marsupial species, and behavioral feeding data were obtained from a subset of this sample (N = 20).

Results: Relative IOF area did not vary significantly between substrate preferences. However, relative IOF area differed significantly by diet category (P < 0.001). Species that specialize in feeding on non-grassy leaves have significantly smaller relative IOF areas than species which primarily feed on grasses, insects, vertebrates, or some combination thereof. Behavioral analyses support that folivorous marsupials approach and remove food with the hands more often than marsupials from other dietary groups.

Discussion: Results suggest that relatively small IOF area may reflect increased reliance on the hands while feeding, and that relative IOF size can be used as an indicator of feeding behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajpa.22931DOI Listing

Publication Analysis

Top Keywords

iof area
20
relative iof
16
infraorbital foramen
8
smaller iofs
8
iof
7
relative
5
primates
5
area
5
primate pattern
4
pattern hold
4

Similar Publications

Unlabelled: The management of osteoporosis even after a fracture is declining. Our pilot study in patients with osteoporosis confirms a large ignorance of the disease and major fears and uncertainties about the treatments. Complete and sustained medical information seems essential to counteract the contradictory information, which are exclusively negative.

View Article and Find Full Text PDF

Realisation of an Application Specific Multispectral Snapshot-Imaging System Based on Multi-Aperture-Technology and Multispectral Machine Learning Loops.

Sensors (Basel)

December 2024

Group of Quality Assurance and Industrial Image Processing, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Gustav-Kirchhoff-Platz 2, 98693 Ilmenau, Germany.

Multispectral imaging (MSI) enables the acquisition of spatial and spectral image-based information in one process. Spectral scene information can be used to determine the characteristics of materials based on reflection or absorption and thus their material compositions. This work focuses on so-called multi aperture imaging, which enables a simultaneous capture (snapshot) of spectrally selective and spatially resolved scene information.

View Article and Find Full Text PDF

Background: The posterior maxilla and skull base is a region with a complex anatomy. Accurate resection of the pterygoid plate is critical during a maxillectomy procedure. However, there is a paucity of functional and anatomical studies on the pterygoid plate and skull base.

View Article and Find Full Text PDF

Objective: To establish precise positional references for orthognathic surgery by examining the relative positioning of the infraorbital foramen (IOF) in relation to the anterior nasal spine (ANS) and the mental foramen (MF) in relation to the pogonion (Pog).

Methods: A cohort of 115 patients with CBCT images was randomly selected for analysis. Distances and positional relationships between the IOF and ANS, as well as the MF and Pog, were measured using 3D reconstruction images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!