Visual Cue-Discriminative Dopaminergic Control of Visuomotor Transformation and Behavior Selection.

Neuron

Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China. Electronic address:

Published: February 2016

Animals behave differently in response to visual cues with distinct ethological meaning, a process usually thought to be achieved through differential visual processing. Using a defined zebrafish escape circuit as a model, we found that behavior selection can be implemented at the visuomotor transformation stage through a visually responsive dopaminergic-inhibitory circuit module. In response to non-threatening visual stimuli, hypothalamic dopaminergic neurons and their positively regulated hindbrain inhibitory interneurons increase activity, suppressing synaptic transmission from the visual center to the escape circuit. By contrast, threatening visual stimuli inactivate some of these neurons, resulting in dis-inhibition of the visuomotor transformation and escape generation. The distinct patterns of dopaminergic-inhibitory neural module's visual responses account for this stimulus-specific visuomotor transformation and behavioral control. Thus, our study identifies a behavioral relevance-dependent mechanism that controls visuomotor transformation and behavior selection and reveals that neuromodulation can be tuned by visual cues to help animals generate appropriate responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2015.12.036DOI Listing

Publication Analysis

Top Keywords

visuomotor transformation
20
behavior selection
12
visual
8
transformation behavior
8
visual cues
8
escape circuit
8
visual stimuli
8
visuomotor
5
transformation
5
visual cue-discriminative
4

Similar Publications

A collicular map for touch-guided tongue control.

Nature

January 2025

Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.

Accurate goal-directed behaviour requires the sense of touch to be integrated with information about body position and ongoing motion. Behaviours such as chewing, swallowing and speech critically depend on precise tactile events on a rapidly moving tongue, but neural circuits for dynamic touch-guided tongue control are unknown. Here, using high-speed videography, we examined three-dimensional lingual kinematics as mice drank from a water spout that unexpectedly changed position during licking, requiring re-aiming in response to subtle contact events on the left, centre or right surface of the tongue.

View Article and Find Full Text PDF

Networks in the parietal and premotor cortices enable essential human abilities regarding motor processing, including attention and tool use. Even though our knowledge on its topography has steadily increased, a detailed picture of hemisphere-specific integrating pathways is still lacking. With the help of multishell diffusion magnetic resonance imaging, probabilistic tractography, and the Graph Theory Analysis, we investigated connectivity patterns between frontal premotor and posterior parietal brain areas in healthy individuals.

View Article and Find Full Text PDF

Unlabelled: Many animals respond to sensory cues with species-specific coordinated movements to successfully navigate their environment. However, the neural mechanisms that support diverse sensorimotor transformations across species with distinct navigational strategies remain largely unexplored. By comparing related teleost species, zebrafish ( ) and ( ), we investigated behavioral patterns and neural architectures during the visually guided optomotor response (OMR).

View Article and Find Full Text PDF
Article Synopsis
  • - This study explores how the brain controls and monitors motor responses, focusing on low-level sensory processing and high-level response evaluation using the Theory of Event Coding (TEC).
  • - Researchers used a visuomotor task to analyze movement-related cortical potentials (MRCPs) and identified different brain signal components related to stimulus processing, motor response preparation, and evaluation of response outcomes.
  • - The findings highlight the sequential activation of motor control signals and the role of statistical methods like Residual Iteration Decomposition (RIDE) and Multivariate Pattern Analysis (MVPA) in understanding the relationship between sensory processing and motor execution, particularly how the brain evaluates actions as they occur.
View Article and Find Full Text PDF

The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!