Carboxypeptidase E is a prediction marker for tumor recurrence in early-stage hepatocellular carcinoma.

Tumour Biol

Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 49, Rm. 6A-10, 49, Convent Drive, Bethesda, MD, 20892, USA.

Published: July 2016

Tumor recurrence and metastasis are the major causes of death for hepatocellular carcinoma (HCC) patients who are able to receive curative resection. Identifying the predicting biomarkers for tumor recurrence would improve their survival. RNA extracted from fresh frozen tumors and adjacent non-tumor liver tissues of 120 HCC patients were obtained from Taiwan Liver Cancer Network (TLCN) in year 2010 for determination of the carboxypeptidase E (CPE) expression level (including its splicing mutant CPE-ΔN) in the tumor tissue (T) and paired non-tumor liver tissue (N) by real-time quantitative polymerase chain reaction. All patients were male, had chronic hepatitis B virus infection, were in the early pathology stage, and received curative resection. The T/N ratio of the CPE expression level was correlated with the updated survival data from TLCN in 2015. The CPE expression level in the 120 HCC patients was divided into three groups according to the T/N ratio: <1, ≥1 and ≤2, and >2, respectively. By multivariate analyses, the recurrence-free survival (RFS) was only significantly associated with the pathology stage and the CPE expression level. For overall survival (OS), only the CPE expression level was the significant prognostic factor. The CPE expression level was also significantly correlated with the tumor recurrence for both stage I (p = 0.0106) and stage II patients (p = 0.0006). The CPE mRNA expression level in HCC can be a useful biomarker for predicting tumor recurrence in HCC patients who are in the early pathology stage and able to receive curative resection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-016-4814-7DOI Listing

Publication Analysis

Top Keywords

expression level
28
cpe expression
24
tumor recurrence
20
hcc patients
16
curative resection
12
pathology stage
12
hepatocellular carcinoma
8
receive curative
8
non-tumor liver
8
120 hcc
8

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!