Astrocytes in various brain regions exhibit spontaneous intracellular calcium elevations both in vitro and in vivo; however, neither the temporal pattern underlying this activity nor its function has been fully evaluated. Here, we utilized a long-term optical imaging technique to analyze the calcium activity of more than 4000 astrocytes in acute hippocampal slices as well as in the neocortex and hippocampus of head-restrained mice. Although astrocytic calcium activity was largely sparse and irregular, we observed a subset of cells in which the fluctuating calcium oscillations repeated at a regular interval of ∼30 s. These intermittent oscillations i) depended on type 2 inositol 1,4,5-trisphosphate receptors; ii) consisted of a complex reverberatory interaction between the soma and processes of individual astrocytes; iii) did not synchronize with those of other astrocytes; iv) did not require neuronal firing; v) were modulated through cAMP-protein kinase A signaling; vi) were facilitated under pathological conditions, such as energy deprivation and epileptiform hyperexcitation; and vii) were associated with enhanced hypertrophy in astrocytic processes, an early hallmark of reactive gliosis, which is observed in ischemia and epilepsy. Therefore, calcium oscillations appear to be associated with a pathological state in astrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhv310DOI Listing

Publication Analysis

Top Keywords

calcium oscillations
12
calcium activity
8
astrocytes
6
calcium
5
camp-dependent calcium
4
oscillations
4
oscillations astrocytes
4
astrocytes implication
4
implication pathology
4
pathology astrocytes
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.

Background: Mitochondrial reactive oxygen species (mROS), such as superoxide and hydrogen peroxide (HO), are implicated in aging-associated neurological disorders, including Alzheimer's Disease and frontotemporal dementia. Mitochondrial complex III of the respiratory chain has the highest capacity for mROS production and generates mROS toward the cytosol, poising it to regulate intracellular signaling and disease mechanisms. However, the exact triggers of complex III-derived ROS (CIII-ROS), its downstream molecular targets, and its functional roles in dementia-related pathogenesis remain unclear.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

San Francisco VA Medical Center, University of California San Francisco, San Francisco, CA, USA.

Background: Effective disease-modifying regimens for Alzheimer's Disease (AD) remain lacking due to insufficient understanding of its pathogenic drivers. It was shown previously that upregulation of the calcium-sensing receptor (CaSR), an excitatory family C GPCR, induces neurodegeneration by interfering with the inhibitory γ-aminobutyric acid (GABA) signaling following acute brain injuries (Ann_Clin_Transl_Neurol, 1:851-66). Herein, we determined whether CaSR overexpression is causally associated with the AD.

View Article and Find Full Text PDF

Background: Altered neuronal timing and synchrony are biomarkers for Alzheimer's disease (AD) and correlate with memory impairments. Electrical stimulation of the fornix, the main fibre bundle connecting the hippocampus to the septum, has emerged as a potential intervention to restore network synchrony and memory performance in human AD and mouse models. However, electrical stimulation is non-specific and may partially explain why fornix stimulation in AD patients has yielded mixed results.

View Article and Find Full Text PDF

Background: Altered liver function and dysregulated metabolism are emerging risk factors for Alzheimer's disease (AD). This includes genetic variation in apolipoprotein E (APOE), which is the strongest genetic risk determinant for AD. APOE is highly secreted by hepatocytes in the liver and astrocytes in the brain and plays a significant role in lipid homeostasis and metabolic function.

View Article and Find Full Text PDF

Introduction: Ischemic stroke greatly threatens human life and health. Neuro-restoration is considered to be the critical points in reestablishing neurological function and improving the quality of life of patients. Catalpol is the main active ingredient of the Chinese herbal medicine , which has the beneficial efficacy in traditional remedy, is closely related to the mitochondrial morphology and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!