Hypothesis: Chitosan, naturally abundant biomaterial showed an insignificant affinity toward arsenate. The incorporation of organosilane could improve the physical and chemical properties of chitosan for the efficient removal of arsenate from aquatic environment.
Experiment: The hybrid materials were obtained by grafting the natural biopolymer chitosan with 3-mercaptopropyl trimethoxysilane (CHMS) and trimethoxy-octylsilane (CHTS). The hybrid materials along with bare chitosan were characterized with SEM-EDX, FT-IR and BET specific surface area analyses and the solid materials were further employed in the efficient remediation of aqueous solutions contaminated with As(V) under batch and column reactor operations.
Findings: The hybrid materials showed an extremely high percentage of As(V) removal compared to bare chitosan within a wide range of pH. As(V) was aggregated rapidly onto the solid surfaces and relatively high percent removal of As(V) was achieved in a wide range of As(V) initial concentrations. Moreover, As(V) was bound with, relatively, weaker forces and forming an 'outer sphere complexes' at the surface of solids. The presence of co-existing ions could not significantly affect the removal of As(V) from aqueous solutions. Furthermore, breakthrough data confirmed that these two hybrid materials possessed significantly high loading capacity of As(V) even under dynamic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2016.01.019 | DOI Listing |
Psychol Serv
January 2025
Center for Health Equity Research and Promotion, Department of Veterans Affairs Pittsburgh Healthcare System.
Chronic insomnia is one of the most common health problems among veterans and can significantly impact health, function, and quality of life. Brief behavioral treatment for insomnia (BBTI), an adaptation of cognitive behavioral therapy for insomnia (CBT-I), was developed to help increase access to care outside of specialty settings. However, training providers alone is rarely sufficient, and implementation strategies are needed for successful uptake, adoption, and sustainable delivery of care.
View Article and Find Full Text PDFLangmuir
January 2025
Dipartimento di Fisica e Chimica - Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy.
Amyloid fibrils have recently emerged as promising building blocks for functional materials due to their exceptional physicochemical stability and adaptable properties. These protein-based structures can be functionalized to create hybrid materials with a diverse range of applications. Here we report a simple eco-friendly protocol for generating amyloid fibrils from hen egg white lysozyme decorated with gold nanoparticles that can self-assemble in a hydrogel.
View Article and Find Full Text PDFJ Clin Microbiol
December 2024
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.
Unlabelled: Tongue swab (TS) sampling combined with quantitative PCR (qPCR) to detect (MTB) DNA is a promising alternative to sputum testing for tuberculosis (TB) diagnosis. In prior studies, the sensitivity of tongue swabbing has usually been lower than sputum. In this study, we evaluated two strategies to improve sensitivity.
View Article and Find Full Text PDFChemSusChem
January 2025
Nanjing Forestry University, College of Light Industry and Food Engineering, CHINA.
Based on the concept "Derived from Agroforestry, belong to (Servicing) Agroforestry", we herein achieved the tandem catalytic transformation of lignin to phenolic aryl acrylic esters, which can work as plant growth regulators. The transformation involves the first catalytic oxidative fractionation (COF) of lignin into aromatic aldehydes, which can further undergo Knoevenagel condensation with acids/esters with active Cα-H to generate the phenolic aryl acrylic esters. For the first lignin transformation, the Cu salt (CuSO4) in a 7.
View Article and Find Full Text PDFSoft Matter
January 2025
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
Flexible two-dimensional nickel-cobalt metal-organic frameworks/graphene oxide/carbon nanotubes (2D NiCo-MOF/GO/CNTs) hybrid films have been designed and prepared as high-performance supercapacitor electrode materials vacuum filtration. The 2D NiCo-MOF nanosheets serve as the main source of capacitance for the hybrid films, while CNTs function as both the conductive network, enhancing the electrical conductivity of the MOFs, and the binder, linking the 2D NiCo-MOF nanosheets and GO. When the mass ratio of 2D NiCo-MOF, GO, and CNTs is 2 : 1 : 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!