Background: A neuroendocrine tumor (NET) can develop anywhere in the body, but is mainly found in the pancreas, gastrointestinal tract, and lungs. This report is a retrospective study of the clinicopathological features of NET patients with brain metastasis whose tissue diagnosis was made at our hospital.

Methods: Patients with brain metastasis evidenced by clinical records and images were accumulated among 302 patients in whom tissue diagnosis of NETs was made at our hospital between 2008 and 2013. In the patients, the primary lesion, pathological classification, pattern of metastasis, details of treatment, and outcomes were analyzed.

Results: Brain metastasis was observed in 31 patients (10.3%). The primary lesion was in the lungs in 26 patients (83.9%), and the mammary glands, esophagus, and uterus in 1 patient each. Primary lesions were unknown in 2 patients, including 1 patient in whom NETs were detected in the lymph nodes alone. Pathological classification of the primary lesion was NET Grade 2 (Ki-67: 3 to 20%) in 3 patients and neuroendocrine carcinoma (NEC, Ki-67: ≥ 21%) in 26 patients. The median period from onset of the primary lesion up to diagnosis of brain metastasis was 12.8 months, and the brain lesion preceded brain metastasis in 6 patients. Ten patients had a single metastasis whereas 21 patients had multiple metastases, but no characteristics were observed in their images. Brain metastasis was extirpated in 10 patients. Stereotactic radiotherapy alone was administered in 6 patients, and brain metastasis was favorably controlled in most of the patients with coadministration of cranial irradiation as appropriate. The median survival period from diagnosis of brain metastasis was 8.1 months, and the major cause of death was aggravation of the primary lesion or metastatic lesions in other organs.

Conclusion: Most of NET patients with brain metastasis showed the primary lesion of NEC in the lungs, and they had multiple metastases to the liver, lymph nodes, bones, and so forth at the time of diagnosis of brain metastasis. The guidelines for accurate diagnosis and treatment of NETs should be immediately established based on further analyses of NET patients with brain metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724130PMC
http://dx.doi.org/10.1186/s12885-015-1999-xDOI Listing

Publication Analysis

Top Keywords

brain metastasis
44
primary lesion
24
patients brain
20
patients
18
brain
13
metastasis
13
net patients
12
diagnosis brain
12
patients neuroendocrine
8
tissue diagnosis
8

Similar Publications

Regulation of metastatic organotropism.

Trends Cancer

December 2024

Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA; Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Metastasis is responsible for most cancer-related deaths. Different cancers have their own preferential sites of metastases, a phenomenon termed metastatic organotropism. The mechanisms underlying organotropism are multifactorial and include the generation of a pre-metastatic niche (PMN), metastatic homing, colonization, dormancy, and metastatic outgrowth.

View Article and Find Full Text PDF

Introduction: Tumorous growths in the sellar region pose significant clinical challenges due to their proximity to critical visual structures such as the optic chiasm and optic nerves. Given their proximity to the optic system, these tumors are often diagnosed due to a progressive decrease in visual acuity. Thus, surgical intervention is crucial to prevent irreversible damage, as timely decompression can halt the progression of edema and subsequent optic atrophy.

View Article and Find Full Text PDF

Histologic transformation from non-small cell to small cell lung cancer (SCLC) is a resistance mechanism to immune checkpoint inhibitors. We report herein a case of lung adenocarcinoma who developed liver and brain metastases during adjuvant atezolizumab therapy. The patient underwent a craniotomy to resect a brain metastasis, which was pathologically diagnosed as SCLC.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!