AI Article Synopsis

  • Lignocellulosic biomass is a sustainable resource for biofuel production that benefits from enzymes called lytic polysaccharide monooxygenases (LPMOs), which degrade lignocellulose.
  • The study investigates the role of non-catalytic carbohydrate binding modules (CBMs) in LPMO function, finding that CBMs can either enhance or inhibit enzyme activity depending on the specific enzyme and substrate involved.
  • The research indicates that the effective binding of LPMOs to cellulose is crucial for catalytic activity, and engineered combinations of LPMOs and CBMs can lead to improved biofuel production outcomes.

Article Abstract

Lignocellulosic biomass is a sustainable industrial substrate. Copper-dependent lytic polysaccharide monooxygenases (LPMOs) contribute to the degradation of lignocellulose and increase the efficiency of biofuel production. LPMOs can contain non-catalytic carbohydrate binding modules (CBMs), but their role in the activity of these enzymes is poorly understood. Here we explored the importance of CBMs in LPMO function. The family 2a CBMs of two monooxygenases,CfLPMO10 andTbLPMO10 fromCellulomonas fimiandThermobispora bispora, respectively, were deleted and/or replaced with CBMs from other proteins. The data showed that the CBMs could potentiate and, surprisingly, inhibit LPMO activity, and that these effects were both enzyme-specific and substrate-specific. Removing the natural CBM or introducingCtCBM3a, from theClostridium thermocellumcellulosome scaffoldin CipA, almost abolished the catalytic activity of the LPMOs against the cellulosic substrates. The deleterious effect of CBM removal likely reflects the importance of prolonged presentation of the enzyme on the surface of the substrate for efficient catalytic activity, as only LPMOs appended to CBMs bound tightly to cellulose. The negative impact ofCtCBM3a is in sharp contrast with the capacity of this binding module to potentiate the activity of a range of glycoside hydrolases including cellulases. The deletion of the endogenous CBM fromCfLPMO10 or the introduction of a family 10 CBM fromCellvibrio japonicusLPMO10B intoTbLPMO10 influenced the quantity of non-oxidized products generated, demonstrating that CBMs can modulate the mode of action of LPMOs. This study demonstrates that engineered LPMO-CBM hybrids can display enhanced industrially relevant oxygenations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817175PMC
http://dx.doi.org/10.1074/jbc.M115.702365DOI Listing

Publication Analysis

Top Keywords

non-catalytic carbohydrate
8
carbohydrate binding
8
binding modules
8
lytic polysaccharide
8
polysaccharide monooxygenases
8
catalytic activity
8
activity lpmos
8
cbms
7
activity
6
lpmos
5

Similar Publications

β-1,3-Glucans form the major carbohydrate component of fungal cell walls, playing a vital role in cell viability, stress response, virulence, and even healthy functions such as immuno-enhancement. The elongation and branching of β-1,3-glucans is a mystery. More evidence proved the β-1, 3-glucantransferases belonging to GH72 or GH17 family to branch and remodel the synthesized linear β-1, 3-glucan chain by cleaving its internal β-1, 3-linkage and transfer the cleaved fragment to the nonreducing end of another β-1, 3-glucan acceptor.

View Article and Find Full Text PDF

New insights into EGCG retards the digestion of wheat starch by α-amylase in ternary system: Comparison with binary systems.

Int J Biol Macromol

December 2024

College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China. Electronic address:

This study was to investigate the mechanism of the action of epigallocatechin gallate (EGCG) on α-amylase in the ternary simulated system and explore the changes in enzyme structure during the digestion process. Enzymatic kinetics, fluorescence spectroscopy, surface hydrophobicity, fluorescence microscopy, and molecular docking were used to compare (in the presence and absence of EGCG) the structural changes of α-amylase and α-amylase-starch complex, as well as the binding characteristics among EGCG and the α-amylase and starch. The results showed that EGCG had a significant inhibitory effect on α-amylase, and it exhibited a coexistence of competitive and anti-competition inhibition type, and predominantly competitive inhibition.

View Article and Find Full Text PDF

κ-Carrageenases play an important role in achieving the high-value utilization of carrageenan polysaccharides. They can be used in the preparation of even-numbered κ-neocarrageenan oligosaccharides by degrading κ-carrageenan (KC). We previously identified and characterized a κ-carrageenase, CaKC16B, with high specificity for producing a single κ-neocarrabiose.

View Article and Find Full Text PDF

Background: GlcNAc2-epimerase (GNE) myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the gene, which is essential for the sialic acid biosynthesis pathway.

Objective: This multi-centre study aimed to delineate the clinical phenotype and variant spectrum in Chinese patients, enhancing our understanding of the genetic diversity and clinical manifestation across different populations.

Methods: We retrospectively analysed variants from 113 patients, integrating these data with external variants from online databases for a global perspective, examining their consequences, distribution, ethnicity and severity.

View Article and Find Full Text PDF

Fructose 1,6-bisphosphatase 2 (Fbp2) is a regulatory enzyme of gluco- and glyconeogenesis which, in the course of evolution, acquired non-catalytic functions. Fbp2 promotes cell survival during calcium stress, regulates glycolysis via inhibition of Hif-1α activity, and is indispensable for the formation of long-term potentiation in hippocampus. In hippocampal astrocytes, the amount of Fbp2 protein is reduced by signals delivered in neuronal extracellular vesicles (NEVs) through an unknown mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!