N-Acetylglucosaminyltransferase III (GnT-III), which catalyzes the addition of the bisecting GlcNAc branch on N-glycans, is usually described as a metastasis suppressor. Overexpression of GnT-III inhibited migration in multiple types of tumor cells. However, these results seem controversial to the clinical observations for the increased expression of GnT-III in human hepatomas, glioma, and ovarian cancers. Here, we present evidence that these inconsistencies are mainly attributed to the different expression pattern of cell sialylation. In detail, we show that overexpression of GnT-III significantly inhibits α2,3-sialylation but not α2,6-sialylation. The migratory ability of cells without or with a low level of α2,6-sialylation is consistently suppressed after GnT-III overexpression. In contrast, the effects of GnT-III overexpression are variable in tumor cells that are highly α2,6-sialylated. Overexpression of GnT-III promotes the cell migration in glioma cells U-251 and hepatoma cells HepG2, although it has little influence in human breast cancer cell MDA-MB-231 and gastric cancer cell MKN-45. Interestingly, up-regulation of α2,6-sialylation by overexpressing β-galactoside α2,6-sialyltranferase 1 in the α2,6-hyposialylated HeLa-S3 cells abolishes the anti-migratory effects of GnT-III. Conversely, depletion of α2,6-sialylation by knock-out of β-galactoside α2,6-sialyltranferase 1 in α2,6-hypersialylated HepG2 cells endows GnT-III with the anti-migratory ability. Taken together, our data clearly demonstrate that high expression of α2,6-sialylation on the cell surface could affect the anti-migratory role of GnT-III, which provides an insight into the mechanistic roles of GnT-III in tumor metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786709 | PMC |
http://dx.doi.org/10.1074/jbc.M115.712836 | DOI Listing |
Biomolecules
December 2023
Medical-Industrial Translational Research Center, Fukushima Medical University, Fukushima City 960-1295, Japan.
Drug resistance is a major obstacle to successful cancer treatment. Therefore, it is essential to understand the molecular mechanisms underlying drug resistance to develop successful therapeutic strategies. α6β4 integrin confers resistance to apoptosis and regulates the survival of cancer cells; however, it remains unclear whether α6β4 integrin is directly involved in chemoresistance.
View Article and Find Full Text PDFJ Biol Chem
April 2023
Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan. Electronic address:
The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells.
View Article and Find Full Text PDFNeuropharmacology
September 2021
Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disease, the main pathological features include deposition of neurofibrillary tangles composed of the abnormally hyperphosphorylated tau protein and plaques deposition composed of β-amyloid (Aβ) peptide. MicroRNAs and aberrant glycosylation both play key roles in a variety of diseases, especially AD. Our previous study showed that N-acetylglucosaminyltransferase III (GnT-III) was expressed strongly in AD model mice.
View Article and Find Full Text PDFMol Cell Proteomics
October 2019
Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Pathol Oncol Res
April 2019
Biomarkers in cancer Laboratory, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
Mammary carcinoma is the most common malignant tumor in women, and it is the leading cause of mortality. In tumor context, glycosylation promotes post translational modifications necessary for cell progression, emerging as a relevant tumor hallmarker. This study aimed to analyze the association between polypeptide N-acetylgalactosaminyltransferase-6 (ppGalNAc-T6), -T8, N-acetylglucosaminyltransferase III (GnT-III) expression, Phaseolus vulgaris-leucoagglutinin (PHA-L), wheat germ agglutinin (WGA) and peanut agglutinin (PNA) staining with clinic-histopathological factors from patients with pure ductal carcinoma in situ (DCIS) and DCIS with invasive ductal carcinoma (DCIS-IDC) of breast.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!