Heparan sulfate proteoglycans mediate Aβ-induced oxidative stress and hypercontractility in cultured vascular smooth muscle cells.

Mol Neurodegener

Department of Neurological Surgery, Washington University School of Medicine, Hope Center Program on Protein Aggregation and Neurodegeneration, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Campus Box 8057, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA.

Published: January 2016

Background: Substantial evidence suggests that amyloid-β (Aβ) species induce oxidative stress and cerebrovascular (CV) dysfunction in Alzheimer's disease (AD), potentially contributing to the progressive dementia of this disease. The upstream molecular pathways governing this process, however, are poorly understood. In this report, we examine the role of heparan sulfate proteoglycans (HSPG) in Aβ-induced vascular smooth muscle cell (VSMC) dysfunction in vitro.

Results: Our results demonstrate that pharmacological depletion of HSPG (by enzymatic degradation with active, but not heat-inactivated, heparinase) in primary human cerebral and transformed rat VSMC mitigates Aβ(1-40⁻) and Aβ(1-42⁻)induced oxidative stress. This inhibitory effect is specific for HSPG depletion and does not occur with pharmacological depletion of other glycosaminoglycan (GAG) family members. We also found that Aβ(1-40) (but not Aβ(1-42)) causes a hypercontractile phenotype in transformed rat cerebral VSMC that likely results from a HSPG-mediated augmentation in intracellular Ca(2+) activity, as both Aβ(1-40⁻)induced VSMC hypercontractility and increased Ca(2+) influx are inhibited by pharmacological HSPG depletion. Moreover, chelation of extracellular Ca(2+) with ethylene glycol tetraacetic acid (EGTA) does not prevent the production of Aβ(1-40⁻) or Aβ(1-42⁻)mediated reactive oxygen species (ROS), suggesting that Aβ-induced ROS and VSMC hypercontractility occur through different molecular pathways.

Conclusions: Taken together, our data indicate that HSPG are critical mediators of Aβ-induced oxidative stress and Aβ(1-40⁻)induced VSMC dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722750PMC
http://dx.doi.org/10.1186/s13024-016-0073-8DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
heparan sulfate
8
sulfate proteoglycans
8
aβ-induced oxidative
8
vascular smooth
8
smooth muscle
8
vsmc dysfunction
8
pharmacological depletion
8
transformed rat
8
hspg depletion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!