In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4939752DOI Listing

Publication Analysis

Top Keywords

perturbation theory
20
quasi-degenerate perturbation
8
matrix product
8
state perturbation
8
excited states
8
model space
8
theory
6
theory matrix
4
product states
4
states work
4

Similar Publications

Qualitative analysis in mathematical modeling has become an important research area within the broad domain of nonlinear sciences. In the realm of qualitative analysis, the bifurcation method is one of the significant approaches for studying the structure of orbits in nonlinear dynamical systems. To apply the bifurcation method to the (2 + 1)-dimensional double-chain Deoxyribonucleic Acid system with beta derivative, the bifurcations of phase portraits and chaotic behaviors, combined with sensitivity and multi-stability analysis of this system, are examined.

View Article and Find Full Text PDF

Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.

View Article and Find Full Text PDF

The density (ρ), speed of sound (), and refractive index ( ) of ,-dimethylacetamide (DMA) with 1-butanol, 1-pentanol, furfural (FFL), or furfuryl alcohol (FA) as a function of composition and at = 293.15 to 323.15 K with an interval of 10 K and atmospheric pressure were measured.

View Article and Find Full Text PDF

Water Activity as an Indicator for Antibody Storage Stability in Lyophilized Formulations.

Mol Pharm

January 2025

Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 70, Dortmund 44227, Germany.

Lyophilization remains a key method for preserving sensitive biopharmaceuticals such as monoclonal antibodies. Traditionally, stabilization mechanisms have been explained by vitrification, which minimizes molecular mobility in the lyophilized cake, and water replacement, which restores molecular interactions disrupted by water removal. This study proposes a novel design strategy that combines water activity and glass-transition temperature as the main indicators to predict long-term stability in lyophilized formulations.

View Article and Find Full Text PDF

Drug Release Nanoparticle System Design: Data Set Compilation and Machine Learning Modeling.

ACS Appl Mater Interfaces

January 2025

Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Greater Bilbao, Basque Country, Spain.

Magnetic nanoparticles (NPs) are gaining significant interest in the field of biomedical functional nanomaterials because of their distinctive chemical and physical characteristics, particularly in drug delivery and magnetic hyperthermia applications. In this paper, we experimentally synthesized and characterized new FeO-based NPs, functionalizing its surface with a 5-TAMRA cadaverine modified copolymer consisting of PMAO and PEG. Despite these advancements, many combinations of NP cores and coatings remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!