Gypenosides (GP) are the predominant components of Gynostemma pentaphyllum, a Chinese herb medicine that has been widely used for the treatment of chronic inflammation, hyperlipidemia, and cardiovascular disease. GP has been demonstrated to exert protective effects on the liver and brain against ischemia-reperfusion (I/R) injury, yet whether it is beneficial to the heart during myocardial I/R is unclear. In this study, we demonstrate that pre-treatment with GP dose-dependently limits infarct size, alleviates I/R-induced pathological changes in the myocardium, and preserves left ventricular function in a rat model of cardiac I/R injury. In addition, GP pre-treatment reduces oxidative stress and protects the intracellular antioxidant machinery in the myocardium. Further, we show that the cardioprotective effect of GP is associated with the preservation of mitochondrial function in the cardiomyocytes, as indicated by ATP level, enzymatic activities of complex I, II, and IV on the mitochondrial respiration chain, and the activity of citrate synthase in the citric acid cycle for energy generation. Moreover, GP maintains mitochondrial membrane integrity and inhibits the release of cytochrome c from the mitochondria to the cytosol. The cytoprotective effect of GP is further confirmed in vitro in H9c2 cardiomyoblast cell line with oxygen-glucose deprivation and reperfusion (OGD/R), and the results indicate that GP protects cell viability, reduces oxidative stress, and preserves mitochondrial function. In conclusion, our study suggests that GP may be of clinical value in cytoprotection during acute myocardial infarction and reperfusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837178PMC
http://dx.doi.org/10.1007/s12192-016-0669-5DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
mitochondrial function
12
preservation mitochondrial
8
function rat
8
i/r injury
8
reduces oxidative
8
mitochondrial
5
gypenosides alleviate
4
alleviate myocardial
4
myocardial ischemia-reperfusion
4

Similar Publications

5-Fluorouracil (5-FU) is a chemotherapeutic that is used to treat solid tumors. However, 5-FU is associated with several side effects, including cardiotoxicity. Considering the importance of the intrinsic cardiac nervous system (ICNS) for the heart and that little is known about effects of 5-FU on this nervous system plexus, the purpose of the present study was to evaluate effects 5-FU at a low dose on the ICNS and oxidative and inflammatory effects in the heart in Wistar rats.

View Article and Find Full Text PDF

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise.

J Cardiovasc Transl Res

January 2025

Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!