Aims: A recent study demonstrated that intracoronary near-infrared spectroscopy (NIRS) findings in non-target vessels are associated with major adverse cardiovascular and cerebrovascular events (MACCE). It is unknown whether NIRS findings at non-stented sites in target vessels are similarly associated with future MACCE. This study evaluated the association between large lipid-rich plaques (LRP) detected by NIRS at non-stented sites in a target artery and subsequent MACCE.
Methods And Results: This study evaluated 121 consecutive registry patients undergoing NIRS imaging in a target artery. After excluding stented segments, target arteries were evaluated for a large LRP, defined as a maximum lipid core burden index in 4 mm (maxLCBI4 mm) ≥400. Excluding events in stented segments, Cox regression analysis was performed to evaluate for an association between a maxLCBI4 mm ≥400 and future MACCE, defined as all-cause mortality, non-fatal acute coronary syndrome, and cerebrovascular events. NIRS detected a maxLCBI4 mm ≥400 in a non-stented segment of the target artery in 17.4% of patients. The only baseline clinical variable marginally associated with MACCE was ejection fraction (HR 0.96, 95% CI 0.93-1.00, P = 0.054). A maxLCBI4 mm ≥400 in a non-stented segment at baseline was significantly associated with MACCE during follow-up (HR 10.2, 95% CI 3.4-30.6, P < 0.001).
Conclusion: Detection of large LRP by NIRS at non-stented sites in a target artery was associated with an increased risk of future MACCE. These findings support ongoing prospective studies to further evaluate the ability of NIRS to identify vulnerable patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ehjci/jev340 | DOI Listing |
Biochem Genet
December 2024
Department of Cardiovascular Medicine, Shanghai Baoshan Luodian Hospital, No. 88, Yongshun Road, Baoshan District, Shanghai, 201908, China.
Recent studies highlight the crucial role of microRNAs (miRNAs) in coronary artery disease (CAD). This retrospective study investigated the abundance of miR-432-5p in the serum of CAD patients and explored its role. 252 volunteers were included.
View Article and Find Full Text PDFSci Rep
December 2024
Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.
Coronary artery disease (CAD) is the main cause of death. It is a complex heart disease that is linked with many risk factors and a variety of symptoms. In the past few years, CAD has experienced a remarkable growth.
View Article and Find Full Text PDFJ Reconstr Microsurg
December 2024
Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia.
Background: Multidisciplinary care with vascular surgery and plastic surgery is essential for lower extremity free flap (LEFF) success in the chronic wound population with diabetes and peripheral vascular disease. There is a lack of understanding on performing targeted direct endovascular reperfusion on a vessel that will be used as the flap recipient. Our study compares outcomes of patients who received targeted revascularization (TR) to the recipient vessel for LEFF anastomosis versus nontargeted revascularization (NR) of arterial recipients prior to LEFF.
View Article and Find Full Text PDFNeuroscience
December 2024
Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India. Electronic address:
This review explores the mechanisms and treatment strategies of ischemic stroke, a leading cause of morbidity and mortality worldwide. Ischemic stroke results from the obstruction of blood flow to the brain, leading to significant neurological impairment. The paper categorizes ischemic stroke into subtypes based on etiology, including cardioembolism and large artery atherosclerosis, and discusses the challenges of current therapeutic approaches.
View Article and Find Full Text PDFEur J Cell Biol
December 2024
Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA. Electronic address:
Vascular stabilization is a mechanosensitive process, in part driven by blood flow. Here, we demonstrate the involvement of the mechanosensitive ion channel, Piezo1, in promoting arterial accumulation of vascular smooth muscle cells (vSMCs) during zebrafish development. Using a series of small molecule antagonists or agonists to temporally regulate Piezo1 activity, we identified a role for the Piezo1 channel in regulating klf2a, a blood flow responsive transcription factor, expression levels and altered targeting of vSMCs between arteries and veins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!