Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mass spectrometry has become a widely used analytical technique for proteomics study because of its high throughput and sensitivity. Among those applications, a specific one is to characterize glycan structure. Glycosylation is a frequently occurred post-translational modification of proteins which is relevant to humans' health. Therefore, it is significant to develop effective computational methods to automate the identification of glycan structures from mass spectral data. In our research, we mathematically formulated the glycan de novo sequencing problem and proposed a heuristic algorithm for glycan de novo sequencing from HCD MS/MS spectra of N-linked glycopeptides. The algorithm proceeds in a carefully designate pathway to construct the best matched tree structure from MS/MS spectrum. Experimental results showed that our proposed approach can effectively identify glycan structures from HCD MS/MS spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNB.2016.2519861 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!