A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.12568DOI Listing

Publication Analysis

Top Keywords

sinusoidal heat
8
heat flux
8
skin surface
8
tissue responses
4
responses fractional
4
fractional transient
4
transient heating
4
heating sinusoidal
4
flux condition
4
skin
4

Similar Publications

Astragaloside IV can mitigate heat stress-induced tissue damage through modulation of the Keap1-Nrf2 signaling pathway in grass carp (Ctenopharyngodon idella).

Fish Shellfish Immunol

February 2025

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, Guangdong, 528225, China. Electronic address:

This study investigated the potential protective effect of AS-IV against heat stress-induced tissue damage in grass carp (Ctenopharyngodon idella). Grass carp were injected intraperitoneally with 0, 2, 4, and 8 mg/kg of AS-IV for three consecutive days, and then subjected to heat stress (35 ± 0.5 °C); thereafter, histopathological analyses of the liver and spleen were performed at 0, 6, 24, and 48 h, respectively.

View Article and Find Full Text PDF

Effects of Congestion in Human Lung Investigated Using Dual-Scale Porous Medium Models.

Int J Numer Method Biomed Eng

January 2025

Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.

Chronic obstructive pulmonary disease (COPD) is a primary chronic respiratory disease associated with pulmonary congestion that restricts airflow and thereby affects the exchange of gases between the alveoli and the blood capillaries in the lungs. Dual scale-global and local-porous medium models have been developed and reported in this work, to study the effects of air-side congestion on the blood-oxygen content in the alveolar region of the human lung. The human lung is model as a global, equivalent, heterogeneous porous medium comprising three zones with distinct permeabilities related to their progressively complex branching structure.

View Article and Find Full Text PDF

Numerical simulation of a two-dimensional Blume-Capel ferromagnet in an oscillating magnetic field with a constant bias.

Phys Rev E

October 2024

PoreLab, NJORD Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway and Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA.

We perform a numerical study of the kinetic Blume-Capel (BC) model to find if it exhibits the metamagnetic anomalies previously observed in the kinetic Ising model for supercritical periods [P. Riego et al., Phys.

View Article and Find Full Text PDF

The dynamics of electro-osmotically generated flow of biological viscoelastic fluid in a cylindrical geometry are investigated in this paper. This flux is the result of walls contracting and relaxing sinusoidally in a magnetic environment. The blood's viscoelasticity and shear-thinning viscosity are the primary causes of its non-Newtonian characteristics.

View Article and Find Full Text PDF

Objectives: This study aims to design and fabricate a modular phantom for hyperthermia applications, addressing interpatient variability in thermal regulation mechanisms like sweating rate, metabolic heat production, and blood redistribution.

Materials & Methods: The phantom can be constructed in various weights and dimensions by connecting identical units. Each unit consists of an agar-based block, an ethyl cellulose-based top layer, a heat source, deep and superficial water circulation, and a sweating mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!