A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723307PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146385PLOS

Publication Analysis

Top Keywords

sensitivity analysis
12
environment management
8
traits
5
assessment potential
4
potential impacts
4
impacts wheat
4
wheat plant
4
plant traits
4
environments
4
traits environments
4

Similar Publications

Validity of one-time phantomless patient-specific quality assurance in proton therapy with regard to the reproducibility of beam delivery.

Med Phys

January 2025

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.

Background: Patient-specific quality assurance (PSQA) is a crucial yet resource-intensive task in proton therapy, requiring special equipment, expertise and additional beam time. Machine delivery log files contain information about energy, position and monitor units (MU) of all delivered spots, allowing a reconstruction of the applied dose. This raises the prospect of phantomless, log file-based QA (LFQA) as an automated replacement of current phantom-based solutions, provided that such an approach guarantees a comparable level of safety.

View Article and Find Full Text PDF

Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.

View Article and Find Full Text PDF

Risk and protective factors of disease flare during pregnancy in systemic lupus erythematosus: a systematic review and meta-analysis.

Clin Rheumatol

January 2025

Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.

To synthesize available evidence on predictive factors associated with systemic lupus erythematosus (SLE) flares during pregnancy, we systematically searched MEDLINE, Embase, and the Cochrane Library through January 2024 for observational studies on risk and protective factors of SLE flares during pregnancy. Odds ratios (OR) and mean differences (MD), as well as their 95% confidence intervals (CI) were used to quantify effect sizes. We employed fixed-effect or random-effect models based on heterogeneity assessments (I statistics).

View Article and Find Full Text PDF

Objectives: To develop and validate a lesion-based grading system using clinicopathological and MRI features for predicting positive surgical margin (PSM) following robotic-assisted laparoscopic prostatectomy (RALP) among prostate cancer (PCa) patients.

Methods: Consecutive MRI examinations of patients undergoing RALP for PCa were retrospectively collected from two medical institutions. Patients from center 1 undergoing RALP between January 2020 and December 2021 were included in the derivation cohort and those between January 2022 and December 2022 were allocated to the validation cohort.

View Article and Find Full Text PDF

Although deterministic analysis can provide initial insights into slope stability, there is no way to reflect the true distribution of soil properties within a slope. To further investigate the effects of the spatial variability of soil properties on the stability and failure mechanism of slope under different foundation types, this study develops a framework combining simple limit equilibrium method (LEM), Monte Carlo Simulation (MCS), and random field to incorporate these factors into slope probabilistic stability analysis. The slope models of two typical foundations (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!