Real-time investigation of dynamic protein crystallization in living cells.

Struct Dyn

Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.

Published: July 2015

X-ray crystallography requires sufficiently large crystals to obtain structural insights at atomic resolution, routinely obtained in vitro by time-consuming screening. Recently, successful data collection was reported from protein microcrystals grown within living cells using highly brilliant free-electron laser and third-generation synchrotron radiation. Here, we analyzed in vivo crystal growth of firefly luciferase and Green Fluorescent Protein-tagged reovirus μNS by live-cell imaging, showing that dimensions of living cells did not limit crystal size. The crystallization process is highly dynamic and occurs in different cellular compartments. In vivo protein crystallization offers exciting new possibilities for proteins that do not form crystals in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4711630PMC
http://dx.doi.org/10.1063/1.4921591DOI Listing

Publication Analysis

Top Keywords

living cells
12
protein crystallization
8
real-time investigation
4
investigation dynamic
4
dynamic protein
4
crystallization living
4
cells x-ray
4
x-ray crystallography
4
crystallography requires
4
requires large
4

Similar Publications

Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).

View Article and Find Full Text PDF

Thermal proteome profiling unveils protein targets of deoxycholic acid in living neuronal cells.

Adv Biotechnol (Singap)

December 2023

Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.

Bile acids, synthesized in the liver and modified by the gut microbiota, play vital roles in various physiological processes. The dysregulation of bile acids has been extensively documented in patients with neurodegenerative diseases. However, limited attention has been given to the protein targets associated with microbiota-derived bile acids in neurological diseases.

View Article and Find Full Text PDF

In-Cell Mass Spectrometry and Ultraviolet Photodissociation Navigates the Intracellular Protein Heterogeneity.

J Am Chem Soc

January 2025

State Key Laboratory of Molecular Reaction Dynamics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Directly probing the heterogeneous conformations of intracellular proteins within their native cellular environment remains a significant challenge in mass spectrometry (MS). Here, we establish an in-cell MS and ultraviolet photodissociation (UVPD) strategy that directly ejects proteins from living cells into a mass spectrometer, followed by 193 nm UVPD for structural analysis. Applying this approach to calmodulin (CaM), we reveal that it adopts more extended conformations within living cells compared with purified samples , highlighting the unique influence of intracellular environments on protein folding.

View Article and Find Full Text PDF

There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control.

View Article and Find Full Text PDF

Aptamer-Modified TiCT MXene Fluorescent Nanoprobe for Monitoring ATP and GTP during a Mild-Photothermal-Activated Nucleolar Stress Process in Living Cells.

Anal Chem

January 2025

Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China.

Understanding the molecular energy metabolism of single cells in the nucleolus stress response induced by mild-photothermal therapy (mPTT) is of great importance for investigating the photothermal lethal mechanism. Herein, we successfully fabricated a "turn-on"-type fluorescent nanoprobe based on the fluorescently labeled aptamers (FAM-ATP-apt and Cy3-GTP-apt) and TiCT MXene. When the adapters on the nanoprobes bonded to intracellular ATP and GTP, the fluorescence of the nanoprobes was restored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!