A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contemporary Role of Computational Analysis in Endovascular Treatment for Thoracic Aortic Disease. | LitMetric

AI Article Synopsis

  • Thoracic endovascular aortic repair (TEVAR) has become the main treatment for descending aortic aneurysms and dissections due to its minimally invasive nature, with outcomes depending on proper patient and stent selection, operator skill, and hemodynamics.
  • Evaluating biomechanical stress on the aortic wall using imaging techniques like CT and MRI, along with patient-specific computer simulations, can enhance procedure planning and assess aortic disease risk.
  • Computational models may also predict the performance of stent grafts preoperatively, optimizing their size and deployment to improve treatment effectiveness in patients undergoing TEVAR.

Article Abstract

In the past decade, thoracic endovascular aortic repair (TEVAR) has become the primary treatment option in descending aneurysm and dissection. The clinical outcome of this minimally invasive technique is strictly related to an appropriate patient/stent graft selection, hemodynamic interactions, and operator skills. In this context, a quantitative assessment of the biomechanical stress induced in the aortic wall due to the stent graft may support the planning of the procedure. Different techniques of medical imaging, like computed tomography or magnetic resonance imaging, can be used to evaluate dynamics in the thoracic aorta. Such information can also be combined with dedicated patient-specific computer-based simulations, to provide a further insight into the biomechanical aspects. In clinical practice, computational analysis might show the development of aortic disease, such as the aortic wall segments which experience higher stress in places where rupture and dissection may occur. In aortic dissections, the intimal tear is usually located at the level of the sino-tubular junction and/or at the origin of the left subclavian artery. Besides, computational models may potentially be used preoperatively to predict stent graft behavior, virtually testing the optimal stent graft sizing, deployment, and conformability, in order to provide the best endovascular treatment. The present study reviews the current literature regarding the use of computational tools for TEVAR biomechanics, highlighting their potential clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682739PMC
http://dx.doi.org/10.12945/j.aorta.2013.13-003DOI Listing

Publication Analysis

Top Keywords

stent graft
12
computational analysis
8
endovascular treatment
8
aortic disease
8
aortic wall
8
aortic
6
contemporary role
4
computational
4
role computational
4
analysis endovascular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!