Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cyanobacteria are potential hosts for the biosynthesis of oleochemical compounds. The metabolic precursors for such compounds are fatty acids and their derivatives, which require chemical activation to become substrates in further conversion steps. We characterized the acyl activating enzyme AAE15 of Arabidopsis encoded by At4g14070, which is a homologue of a cyanobacterial acyl-ACP synthetase (AAS). We expressed AAE15 in insect cells and demonstrated its AAS activity with medium chain fatty acid (C10-C14) substrates in vitro. Furthermore, we used AAE15 to complement a Synechocystis aas deletion mutant and showed that the new strain preferentially incorporates supplied medium chain fatty acids into internal lipid molecules. Based on this data we propose that AAE15 can be utilized in metabolic engineering strategies for cyanobacteria that aim to produce compounds based on medium chain fatty acids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722043 | PMC |
http://dx.doi.org/10.1186/s13568-016-0178-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!