Targeting non-canonical autophagy overcomes erlotinib resistance in tongue cancer.

Tumour Biol

School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, 250012, China.

Published: July 2016

Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) frequently occurs in many human cancers and hampers their therapeutic use. A large body of evidence has demonstrated the pro-survival role of autophagy in many human cancers. However, whether autophagy is involved in the induction of erlotinib resistance in tongue squamous cell carcinoma (TSCC) remains unknown. In this report, we found that autophagy prior to or induced by erlotinib treatment plays an important role in erlotinib resistance in tongue cancer cells. Using LC3 transfection, we observed that autophagy is upregulated and further induced when treated with erlotinib. Moreover, we found that autophagy plays a cytoprotective role by MTT analysis of the cell viability in TSCCs when treated with rapamycin or hydroxychloroquine (HCQ) in combination with erlotinib. However, 3-methyladenine (3-MA) did not influence the autophagy. Then, through siRNA technology and WB, we found that erlotinib-induced autophagy is mediated by ATG5 but not Beclin1. Also, knockdown of ATG5 significantly decreased the erlotinib resistance and knockdown of Beclin1 did not affect the sensitivity to erlotinib in TSCCs. Taken together, this indicates the critical role of non-canonical autophagy in erlotinib resistance in TSCCs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-015-4689-zDOI Listing

Publication Analysis

Top Keywords

erlotinib resistance
20
resistance tongue
12
autophagy
9
erlotinib
9
non-canonical autophagy
8
tongue cancer
8
human cancers
8
resistance
6
targeting non-canonical
4
autophagy overcomes
4

Similar Publications

This study aims to demonstrate the effect of toadflax (bufalin) on erlotinib resistance in nonsmall cell lung cancer (NSCLC) by inhibiting the fibroblast growth factor receptor (FGFR). The microfluidic mobility transferase and caliper mobility-shift assays were employed to detect the FGFR inhibition by bufalin and the binding reversibility. Further, the inhibitory effects of bufalin were determined in HCC827 and HCC827/ER cells in vitro, investigating relative FGFR overexpression by quantitative reverse transcriptase-PCR (RT-qPCR) and FGFR downstream proteins, that is, FGFR substrate 2 (FRS2), extracellular signal-regulated kinase (ERK), and S6 by western blot analysis.

View Article and Find Full Text PDF

HER2-positive (HER2+) breast cancer is characterized by the overexpression of the ERBB2 (HER2) gene, which promotes aggressive tumor growth and poor prognosis. Targeting the ERBB2 pathway with single-agent therapies has shown limited efficacy due to resistance mechanisms and the complexity of gene interactions within the tumor microenvironment. This study aims to explore potential drug synergies by analyzing gene-drug interactions and combination therapies that target the ERBB2 pathway in HER2+ breast tumors.

View Article and Find Full Text PDF

The design and synthesis of unique two series of fluorinated sulfonamides 3a-f and 5a-g utilizing nucleophilic aromatic substitution reactions of tetrafluorophthalonitrile 1 with various sulfonamides 2 under a variety of different reactions conditions were the key goals of the current research. The chemical composition of the generated products has been investigated via mass spectroscopy, HNMR, CNMR, infrared, and elemental analyzes. Antimicrobial studies were conducted in vitro to evaluate the activity of all new synthesized compounds against resistant strains.

View Article and Find Full Text PDF

Introduction: First-line osimertinib is widely used to treat patients with epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancers (NSCLC). In clinical practice, rechallenge therapy with another EGFR-tyrosine kinase inhibitor (TKI) is often performed after first-line TKI discontinuation owing to resistance or toxicity; however, the efficacy and toxicity of EGFR-TKI rechallenge after first-line osimertinib have not been adequately investigated. This study aimed to examine the efficacy and safety of EGFR-TKI rechallenge with another TKI.

View Article and Find Full Text PDF

Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth.

Cell Commun Signal

December 2024

International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.

Article Synopsis
  • The study focuses on overcoming drug resistance in non-small cell lung cancer (NSCLC) patients due to the EGFR T790M mutation, which often develops during erlotinib treatment, by using advanced machine learning to identify new selective inhibitors.
  • An integrated machine learning approach screened over 70,000 molecules, ultimately identifying CDDO-Me as an effective inhibitor that selectively binds to the mutated EGFR.
  • CDDO-Me was shown to induce apoptosis and cell cycle arrest in cancer cells by inhibiting the PI3K-Akt-mTOR pathway, with in vivo tests confirming its efficacy in reducing tumor growth in a mouse model.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!