A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Zero-valent iron-activated persulfate oxidation of a commercial alkyl phenol polyethoxylate. | LitMetric

Zero-valent iron-activated persulfate oxidation of a commercial alkyl phenol polyethoxylate.

Environ Technol

a Department of Environmental Engineering, School of Civil Engineering , Istanbul Technical University, Istanbul , Turkey.

Published: December 2016

Aqueous Triton X-45 (TX-45; 20 mg/L; original total organic carbon (TOC) = 14 mg/L), a representative, commercially important alkylphenol polyethoxylate, was subjected to persulfate (PS) oxidation activated with zero-valent iron (ZVI) nanoparticles. After optimization of the ZVI/PS treatment combination (1 g/L ZVI; 2.5 mM PS at pH5) in terms of pH (3-9), ZVI (0.5-5 g/L) and PS (0.5-5.0 mM) concentrations, TX-45 could be efficiently (>90%) degraded within short treatment periods (<60 min) accompanied with significant (>40%) TOC removals. The degree of PS consumption and Fe release was also followed during the experiments and a positive correlation existed between enhanced TX-45 removals and ZVI-activated PS consumption rates accompanied with a parallel Fe release. Acute toxicity tests were conducted using two different bioassays to examine the toxicological safety of the ZVI/PS oxidation system. Acute toxicity profiles significantly decreased from an original value of 66% relative inhibition to 21% and from 16% relative inhibition to non-toxic values according to Vibrio fischeri and Pseudokirchneriella subcapitata bioassays, respectively. The photobacterium V. fischeri appeared to be more sensitive to TX-45 and its degradation products than the microalgae P. subcapitata.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2015.1131751DOI Listing

Publication Analysis

Top Keywords

persulfate oxidation
8
acute toxicity
8
relative inhibition
8
zero-valent iron-activated
4
iron-activated persulfate
4
oxidation commercial
4
commercial alkyl
4
alkyl phenol
4
phenol polyethoxylate
4
polyethoxylate aqueous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!