Objective: Hypertension can alter the vascular structure, mechanics, and function of small arteries and arterioles. It remains unknown whether microvascular changes are associated with brain metabolism. The purpose of this study was to analyze the correlation between the reduction in small arteries and changes in brain metabolism in patients with hypertension.

Subjects And Methods: The study population comprised 50 patients with hypertension and 50 volunteers without hypertension. The two groups underwent 3-T 3D time-of-flight MR angiography, and the numbers of lenticulostriate arteries (LSAs) were determined for both groups. Single-voxel proton MR spectroscopic data on the basal ganglia regions were also acquired. The ratios of N-acetylaspartate to creatine (NAA/Cr), myo-inositol to creatine (Mi/Cr), and choline to creatine (Cho/Cr) were measured. Statistical analysis was performed to evaluate the differences between the two groups with respect to metabolite ratios.

Results: The average total number of LSA stems on both sides in patients with hypertension was 5.12 ± 0.98 compared with 6.10 ± 0.95 in volunteers without hypertension (p < 0.0001). The NAA/Cr ratio decreased according to a reduction in the number of LSAs in the hypertension group, which was significantly reduced when the number of LSAs was 3 or fewer.

Conclusion: Hypertension can lead to a statistically significant reduction in NAA/Cr ratio in the basal ganglia regions when the number of LSAs decreases to a certain extent. Reduced numbers of LSAs correlated with brain metabolism changes caused by hypertension, which can provide important insights for understanding the pathophysiologic mechanism of hypertension and may be valuable in evaluating this disease.

Download full-text PDF

Source
http://dx.doi.org/10.2214/AJR.15.14514DOI Listing

Publication Analysis

Top Keywords

brain metabolism
16
number lsas
12
hypertension
10
correlation reduction
8
lenticulostriate arteries
8
caused hypertension
8
changes brain
8
small arteries
8
patients hypertension
8
volunteers hypertension
8

Similar Publications

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Sheehan syndrome: a current approach to a dormant disease.

Pituitary

January 2025

Department of Endocrinology and Metabolism, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye.

Sheehan syndrome (SS) is postpartum pituitary necrosis leading to severe hypopituitarism. Severe bleeding during delivery and postpartum period results in ischemic necrosis of the enlarged pituitary gland during pregnancy. The improved obstetrical care decreased the incidence of SS significantly, however SS should always be kept in mind in the etiologies of hypopitutarism in women which can be easily recognized by medical history of the patient.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!