Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The low-lying excited states of cob(ii)alamin were investigated using time-dependent density functional theory (TD-DFT). The performance of TD-DFT calculations was further evaluated using CASSCF/XMCQDPT2, where both four-coordinate and five-coordinate models of cob(ii)alamin were considered. Dependence of electronic structure on the axial base was then investigated using TD-DFT. Consistent with previous benchmarks, the BP86 functional provides a reliable description of the electronically excited states. It was found that the dyz + π → dz(2) character of the D1 state increases with respect to the axial base distance, corresponding to a lowering in energy of anti-bonding dz(2) orbitals, leading to near a degeneracy between the ground, and D1 states in the base-off form.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp06439b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!