The purpose of this study is to assess the relationship between ambient temperature and surface temperatures of commonly used building/ground materials, in order to estimate the risk of contact thermal injury. It is an observational study where the air ambient temperature and the surface temperatures of slate, metal, cement, sand, brick and bitumen, were measured, in shaded and unshaded conditions, on cloudy and cloudless days in summer in Adelaide, South Australia. All unshaded surfaces reached temperatures capable of causing significant sole of foot burns given requisite exposure time in both clear and overcast conditions, even with a relatively low ambient temperature. Shade imparted total protection from irreversible thermal injury for all of the ambient temperatures assessed. Although surface temperatures were reduced in overcast conditions, the temperatures recorded were still capable of causing thermal injury. Peripheral neuropathy prolongs heat exposure times, often resulting in significant and complex injury, requiring lengthy treatment and generating potentially poor functional outcomes. This study provides a reference point for the enactment of preventative measures for at risk population groups such a diabetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.burns.2015.08.026 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, Saitama University, Saitama City, Saitama 338-8570, Japan.
Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.
View Article and Find Full Text PDFDalton Trans
January 2025
Chemistry Division, Bhabha Atomic Research, Centre, Mumbai 400085, India.
Magnetic field-dependent magnetization of highly crystalline FeO magnetic nanoparticles has been carried out to understand surface canting structures at low and room temperatures. The exchange bias () values of ∼18 to 27 Oe at 300 K for three samples prepared from different precursors are observed; and a decrease in value is obtained when the samples are measured at 5 K. However, with a decrease in temperature, coercivity () increases.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA.
A remarkable property of flexible self-avoiding elastic surfaces (membranes) is that they remain flat at all temperatures, even in the absence of a bending rigidity or in the presence of active fluctuations. Here, we report numerical results of these surfaces wherein we alter their topology by systematically cleaving internal bonds. While it is known that a random removal of membrane bonds does not disrupt the overall extended shape of the membrane, we find that cleaving an elastic surface with longitudinal parallel cuts leads to its systematic collapse into a number of complex morphologies that can be controlled by altering the number and length of the inserted cuts.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.
Photocatalytic transformation of nitrate (NO) in wastewater into ammonia (NH) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO) powders, prepared via the sol-gel method and subsequent calcination, promote NO-to-NH reduction in water.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Furman University, Greenville, South Carolina 29613, United States.
Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!