The aim of this work was to demonstrate the effectiveness of hydrolysis pretreatment of olive mill (OMW) waste before use as a carbon source in biosurfactant production by fermentation. Three hydrolysis methods were assessed: enzymatic hydrolysis, acid pretreatment plus enzymatic hydrolysis, and acid hydrolysis. Fermentation was carried out using two bacterial species: Pseudomonas aeruginosa and Bacillus subtilis. Our results showed that the enzymatic hydrolysis was the best pretreatment, yielding up to 29.5 and 13.7mg/L of rhamnolipids and surfactins respectively. Glucose did not show significant differences in comparison to enzymatically hydrolysed OMW. At the best conditions found rhamnolipids and surfactins reached concentrations of 299 and 26.5mg/L; values considerably higher than those obtained with non-hydrolysed OMW. In addition, enzymatic pretreatment seemed to partially reduce the inhibitory effects of OMW on surfactin production. Therefore, enzymatic hydrolysis proved to effectively increase the productivity of these biosurfactants using OMW as the sole carbon source.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.01.016DOI Listing

Publication Analysis

Top Keywords

enzymatic hydrolysis
16
hydrolysis
8
olive mill
8
surfactin production
8
carbon source
8
hydrolysis acid
8
rhamnolipids surfactins
8
omw
5
enzymatic
5
hydrolysis olive
4

Similar Publications

is a tasty and low-calorie mushroom containing abundant high-quality protein. This study aims to improve the digestibility of protein (PEP) and hence to facilitate its development as a healthy alternative protein. The extracted PEP was pretreated with 1000-5000 U of papain, neutral protease and alkaline protease.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes.

View Article and Find Full Text PDF

The use of fish rest raw material for the production of fish protein hydrolysates (FPH) through enzymatic hydrolysis has received significant interest in recent decades. Peptides derived from fish proteins are known for their enhanced bioactivity which is mainly influenced by their molecular weight. Studies have shown that novel technologies, such as high-pressure processing (HPP), can effectively modify protein structures leading to increased biological activity.

View Article and Find Full Text PDF

In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6.

View Article and Find Full Text PDF

Marine microalgae are emerging as promising sources of polyphenols, renowned for their health-promoting benefits. Recovering polyphenols from microalgae requires suitable treatment and extraction techniques to ensure their release from the biomass and analytical methodologies to assess their efficiency. This review provides a comprehensive comparison of traditional and cutting-edge extraction and analytical procedures applied for polyphenolic characterization in marine microalgae over the past 26 years, with a unique perspective on optimizing their recovery and identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!