Introducing the predatory mite Phytoseiulus persimilis into two-spotted spider mite, Tetranychus urticae, populations significantly increased the proportion of T. urticae infected with the spider mite pathogen Neozygites floridana in one of two experiments. By the final sampling occasion, the number of T. urticae in the treatment with both the predator and the pathogen had declined to zero in both experiments, while in the fungus-only treatment T. urticae populations still persisted (20-40 T. urticae/subsample). Releasing P. persimilis into crops in which N. floridana is naturally present has the potential to improve spider mite control more than through predation alone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jip.2016.01.005DOI Listing

Publication Analysis

Top Keywords

spider mite
16
predatory mite
8
neozygites floridana
8
two-spotted spider
8
urticae populations
8
mite
6
interactions natural
4
natural enemies
4
enemies predatory
4
mite transmission
4

Similar Publications

The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a major pest of various plants with a worldwide distribution. Extensive use of chemical pesticides has led to the development of resistance in this pest, making biological control agents a viable alternative for its management. The predatory mites, Neoseiulus californicus (McGregor) and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) are the most important predators of the two-spotted spider mites.

View Article and Find Full Text PDF

Typhlodromus (Anthoseius) recki feeds on pest mites on tomato plants and its introduction into crops via companion plants, Mentha suaveolens and Phlomis fruticosa, has been recently investigated. This study aims at assessing the predator arrestment behavior, through lab choice tests to determine the effects of (i) prey (Aculops lycopersici and Tetranychus urticae) vs Typha angustifolia pollen deposited on companion plant or Solanum nigrum, (ii) T. urticae vs A.

View Article and Find Full Text PDF

Background: Light-emitting diodes (LEDs) are being used in controlled environments to enhance crop production and pest management with most studies focusing on continuous treatments (applied throughout the entire daytime or nighttime period). Here, we tested the hypothesis that providing tomato plants with timed LED regimes (daily 3-h doses of red, blue, or far-red LED) during the day or at night may affect their traits (leaf reflectance indices, element composition, and phenolic profile), performance of two-spotted spider mites (Tetranychus urticae) (TSSM), and a species of predatory mite (Phytoseiulus persimilis).

Results: Nighttime LED regimes significantly altered leaf element composition: red LED increased K levels, blue LED enhanced Mg levels, and far-red LED enhanced Mn and Cu and reduced Zn levels.

View Article and Find Full Text PDF

The citrus red mite (CRM), Panonychus citri (McGregor) (Acari: Tetranychidae), a worldwide pest chiefly infesting Citrus plants, has spread from Southern China to Northern China. Little information is known about the population performance of CRM on the plants except for citrus trees and pear trees. In order to evaluate the extent of damage might caused by CRM to the fruit trees cultivated in Northern China, the performance of CRM on four Rosaceae species, including three main fruit tree species (pear-Pyrus pyrifolia Nakai cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!