Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biocatalyst immobilization is one of the techniques, which can improve whole cells or enzyme applications. This method, based on the fixation of the biocatalyst into or onto various materials, may increase robustness of the biocatalyst, allows its reuse, or improves the product yield. In recent decades, a number of immobilization techniques have been developed. They can be divided according to the used natural or synthetic material and principle of biocatalyst fixation in the particle. One option, based on the entrapment of cells or enzymes into a synthetic polyvinyl alcohol lens with original shape, is LentiKats® immobilization. This review describes the preparation principle of these particles and summarizes existing successful LentiKats® immobilizations. In addition, examples are compared with other immobilization techniques or free biocatalysts, pointing to the advantages and disadvantages of LentiKats®.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-016-7283-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!